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Introduction

This memoir first develops the mathematical framework of tensors, including several original responses to
problems posed in [3], and then uses this framework to attempt to study the types of large networks that
are commonly found in biological data.
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Chapter 1

Basic algebra

In this chapter will introduce a few of the key concepts which we’ll use to define tensors.

1.1 Modules

1.1.1 Generalities

In this section we will define modules and describe some of their properties. Intuitively, a module is like a
vector space, but the scalars are from a ring that isn’t necessarily a field. We will now proceed to formally
define a module, starting with the definition of some more basic algebraic structures.

Definition 1. A group is a set of elements G and an internal composition law between those elements ’.’
such that

1. the law . is associative: for any three elements x, y, z in G, we have (x.y).z = x.(y.z);

2. the law . admits a neutral element : there is a element e in G such that for all x in G, e.x = x.e = x;

3. each x in G is invertible: for every element x in G there is a element x−1 in G, called the inverse of x,
such that x.x−1 = x−1.x = e.

A group is called commutative or abelian if x.y = y.x for all x and y in G. Please note that the
internal composition law is not always noted by ’.’ - other symbols are often used. In particular, the internal
composition law of an abelian group is sometimes noted ’+’; in this case the neutral element is noted 0, and
the inverse of x becomes its opposite −x.

Definition 2. Let N be a set of n elements. Then the group of bijective functions from N to N with
the composition of functions as internal composition law, will be called the permutation group or the
symmetric group of n elements, and noted Sn.

We consider that there is only one symmetric group on n elements as we can create a bijection between
any set of n elements. As such, we usually consider that N = {1, . . . , n}.

Definition 3. A ring (A,+,×) is an abelian group that has a second internal composition law, generally
called multiplication and frequently noted ’×’, associative and also distributive over the first one, which
means that for all a, b and c in A we have that

a× (b+ c) = (a× b) + (a× c) ,

(b+ c)× a = (b× a) + (c× a) .
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If the ring has a neutral element for its second law, this element is generally noted 1 and the ring is said
to be unitary. We will almost exclusively consider unitary rings in the rest of this text, and a ring should
be assumed to be unitary unless it is explicitly said otherwise.

A ring with a commutative multiplication group is called a commutative ring.

Definition 4. An element a of a ring A is called invertible if it has a multiplicative inverse, in other words,
if there is an a−1 in A such that a× a−1 = a−1 × a = 1.

Definition 5. A field is a unitary ring with 1 6= 0 such that all non zero elements are invertible.

Now we can define modules. Once again, the general intuition of ”a module is a vector space with the
scalars coming from a ring that is not necessarily a field” may be useful to keep in mind. The switch from
a field of scalars to a ring of scalars can lead to the loss of some of the nice properties of vector spaces.

In all of the following definitions, we will be using a unitary ring (A,+,×).

We can now define left and right modules.

Definition 6. A left A-module (M,+, .) is an abelian group on which is defined an operation A×M −→M
called scalar multiplication, that respects the following properties for all a, b in A and for all m,n in M :

• a(m+ n) = am+ an,

• (a+ b)m = am+ bm,

• a(bm) = (ab)m,

• 1Am = m.

If we instead define scalar multiplication on the right, then we have a right A-module. If (A,×) is
commutative, both are the same. We will exclusively consider left modules in the rest of this text.

From this point on in the text, we may occasionally refer to an A-module as simply a module, and omit
the reference to the scalar ring.

Definition 7. If M is an A-module and N is a subset of M , we call N a submodule of M if it is a subset
of M that is an A-module for the addition and scalar multiplication induced by the ones of M .

If N is a submodule of M , then N is non empty, and we have that for all n, n′ in N , and for all scalars
a in A, an ∈ N and and n+ n′ ∈ N . This is actually a characterisation of submodules: if we have a module
M and we want to verify that a subset N ⊆ M is a submodule, we simply verify that it is non empty and
closed under addition and scalar multiplication.

Proposition 1. If M is an A-module and N a submodule of M , the binary relation ∼N on M defined by
x ∼N y if there exists an element n of N such that x + n = y is an equivalence relation. Let us define the
quotient of M by N , usually noted M/N , as the set of equivalence classes under this relation. Then the
operations of M induce operations on the quotient that give to M/N a structure of A-module. In particular,
elements of N are sent to zero by the projection from M to M/N .

Definition 8. A linear combination of m1, ...,mn, where all the mi are elements of an A-module M is
simply an element of M that can be written as λ1m1 + ...+λnmn, with λ1, .., λn being elements of the scalar
ring A.

Definition 9. Some elements mi, with i ∈ I, of M are said to be linearly independent if the only possible
finite linear combination of these elements equal to zero is the one where all scalar coefficients are equal to
zero. In other words (or rather, symbols), for any finite subset {i1, . . . , ir} of I,∑

1≤k≤r

λikmik = 0 =⇒ ∀k ∈ {1, . . . , r}, λik = 0 .
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Definition 10. The direct product of a family of modules (Mi)i∈I is the module with the underlying
set

∏
iMi being the cartesian product of the underlying sets, the group law being determined termwise, ie

(mi)i + (ni)i = (mi + ni)i, and scalar multiplication being defined as a(mi)i = (ami)i.

Definition 11. The direct sum of a family (Mi)i∈I of modules, noted
⊕

iMi is the submodule of their
direct product composed of elements who have only a finite number of components with non-zero values.

Definition 12. Let M an A-module and (mi)i∈I a family of elements of M .

• If every element of M can be written as a finite linear combination of the mi, then we call {mi ; i ∈ I}
a generating set of M .

• If {mi ; i ∈ I} is generating and the mi are linearly independent, the family (mi)i∈I is called a basis
of M . Or to put it another way, (mi)i∈I is a basis if M =

⊕
iAmi, where A is the ring of scalars.

• If M admits a basis indexed on a finite set I, then M is said finitely generated, or of finite type.

Definition 13. A module over a field is called a vector space.

Definition 14. Let V be a vector space over a field K. If V is equipped with a binary operation ∗ : V ×V →
V such that for all vectors x, y, z and all scalars α, β

(αx+ βy) ∗ z = α(x ∗ z) + β(y ∗ z),
x ∗ (αy + βz) = α(x ∗ y) + β(y ∗ z),
(αx) ∗ (βy) = (αβ)(x ∗ y),

then V becomes an algebra over the field K.

1.1.2 Free modules

In this section we define the free A-module over a set X, using a method detailed in [3].

We will let X be any non empty set, and A be a ring of scalars, and we will use the standard set-theoric
notation AX to denote the set of functions from X to A. Moreover, we will denote A(X) the subset of AX

consisting of functions from X to A with only a finite number of non-zero values, ie

A(X) = {u ∈ AX ; #{x ∈ X : u(x) 6= 0} <∞} .

We will show briefly that AX is a module, then that A(X) is a submodule of AX , give a basis of A(X)

and show that it has a universal property.

Proposition 2. The set AX is a module under the operations given for f, g ∈ AX and λ ∈ A, by λf : x 7→
λf(x) and f + g : x 7→ f(x) + g(x).

Proof. Because any ring is a module over itself, we have that (AX ,+) is an abelian group with neutral
element 0AX : x 7→ 0A, and for all x in X,

λ(f + g)(x) = λf(x) + λg(x),

(λ+ µ)f(x) = λf(x) + µf(x),

λ(µf(x)) = (λµ)f(x),

1f(x) = f(x),

and hence the module axioms are verified.

We now define for each x in X a corresponding function ex ∈ A(X) which sends x to 1A and every other
element of X to 0A.
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Proposition 3. A(X) is a submodule of AX .

Proof. It suffices to verify that A(X) is non empty and closed under scalar multiplication and addition. The
family (ex)x∈X is in A(X) as every element of that family has exactly one non-zero value. Furthermore, the
sum of two functions with a finite number of non-zero values will also have a finite number of non-zero values,
and multiplying by a scalar does not change the zeros of a function. Hence, A(X) is indeed a submodule of
AX .

Proposition 4. The (ex)x∈X form a basis of A(X).

Proof. We will first show that this family is linearly independent. Suppose that there exists a finite subset
Y of X and (λx)x∈Y such that ∑

x∈Y
λxex = 0 .

This means that for every y in X,
∑
x∈Y λxex(y) = 0. But if we take y = x, then this must mean that λx is

nul for every x in Y , and therefore the family (ex)x∈X is indeed linearly independent.
To show that it is a generating family of A(X), take any u in the aforementioned set. It can be written as

u =
∑
x∈X

u(x)ex ,

(recall that u(x) = 0 apart from a finite numbers of values of x), and so the (ex)x∈X do indeed form a basis
of A(X).

We now give a universal property of A(X).

Proposition 5. If M is any A-module and f is any function from X to M , there exists a unique linear
map f̂ from A(X) to M such that for all x in X, f̂(ex) = f(x).

Proof. As u(x) is a scalar of A for each x, we can simply define

f̂(u) =
∑
x∈X

u(x)ex

for every u in A(X). We have existence by construction and uniqueness by linearity. This is illustrated in
the following commutative diagram.

A(X)

MX
f

f̂

Figure 1.1: Commutatif diagram

We can now define the free A-module on X to beA(X). If we identify each x inX with the corresponding
ex in A(X), the free A-module on X can be thought of as the set of finite linear combinations of elements of
X, and in particular X as a subset of A(X).

With this construction, if X and X ′ are two finite sets with the same cardinal, then they give isomorphic
free modules.
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Notation The free module over X will also sometimes be noted FX .

Notice From now on, we will consider modules over a commutative unitary ring K.

1.2 Linear and multi-linear maps

1.2.1 Definitions and notations

Definition 15. A K-linear map, or more simply a linear map is a map l from one K-module M to
another K-module N such that for all m,m′ in M and for all a in K we have l(m+m′) = l(m) + l(m′) and
l(am) = al(m).

Definition 16. A K-bilinear map, or more simply a bilinear map is a map φ from a cartesian product
of K-modules M ×N into another K-module R such that for all (m,n), (m′, n′) in M ×N and for all a in
K, we have that φ(am, n) = aφ(m,n) = φ(m, an), φ(m + m′, n) = φ(m,n) + φ(m′, n) and φ(m,n + n′) =
φ(m,n) + φ(m,n′).

We can generalize this to a cartesian product of n modules with multi-linear maps.

Definition 17. A multi-linear or n-linear map is a function with n variables that is linear in each one of
it’s variables. In other words, if X1, . . . Xn and Y are K-modules then f : X1 × . . . Xn −→ Y is n-linear, if
for all i in {1, . . . , n}, and for any set of vectors v1, . . . vi−1, vi+1, . . . , vn in X1 × . . . Xi−1 ×Xi+1 × · · · ×Xn

the function xi 7→ f(v1, . . . , vi−1, xi, vi+1, . . . , vn) is linear.

This definition is a generalization of the two previous ones, linear maps are n-linear maps for n = 1, and
bilinear maps are n-linear maps for n = 2.

Like with linear maps and multi-linear maps, we can also define linear and multi-linear forms.

Definition 18. A linear map from an K-module M to its scalar ring K is called a linear form.

Definition 19. A multi-linear form or an n-linear form is a multi-linear or n-linear map from the
cartesian product of K-modules M1 × · · · ×Mn to their scalar ring K.

Notation Let X,Y,X1, . . . , Xn be modules over a commutative ring K. We will use the notation L(X;Y )
to designate the set of linear maps from X to Y , L(X) to designate the set of linear maps from X to X and
L(X1, . . . , Xn;Y ) to designate the set of n-linear maps from X1 × · · · ×Xn to Y .

We note that all of the sets mentioned above are modules for the operations

f + g = x 7→ f(x) + g(x)

λf = x 7→ λf(x)

by virtue of X and Y being modules.

Proposition 6. If M , N and Z are K-modules, then L(M,N ;Z) is isomorphic to L(M,L(N ;Z)) .

Proof. Let us consider the map

τ : L(M,N ;Z) −→ L(M ;L(N ;Z)) ,

φ 7−→ uφ

where uφ : M −→ L(N ;Z) m 7−→ uφ,m , and uφ,m : N −→ Z is the map that takes n ∈ N and sends it
to φ(m,n): we have uφ,m(n) = φ(m,n).
The map uφ,m is linear because φ is bilinear, and the linearities of uφ and τ are immediate. Moreover, the
equalities uφ,m(n) = φ(m,n) imply that uφ determines φ, thus τ is an isomorphism.
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1.2.2 A characterization of multi-linear forms on finitely generated free modules

One of the advantages of multi-linear forms on finitely generated free modules is that they are completely
and uniquely determined by what the basis elements map to.

Theorem 1. Let X1, . . . , Xr (with r ≥ 0) be finitely generated free modules over a commutative ring K,
with X1, . . . , Xr having for respective bases (a1,i)1≤i≤n1

, . . . , (ar,i)1≤i≤nr
.

A function f : X1×· · ·×Xr → K is r-linear if and only if there exists a family (ci1...ir )1≤i1≤n1,...,1≤ir≤nr

of elements of K such that, for any tuple of vectors (x1, . . . , xr) ∈ X1 × · · · × Xr, where each xk in Xk is
written as

∑nk

i=1 xk,iak,i, we have

f(x1, . . . , xr) =
∑

i1,...,ir

x1,i1 . . . xr,irci1...ir ,

and ci1...ir = f(a1,i1 , . . . , ar,ir ).

Proof. If f is multi-linear, then by definition we must have that

f(x1, . . . , xr) = f(
∑
i1

x1,i1a1,i1 , . . . ,
∑
ir

xr,irar,ir )

=
∑

i1,...,ir

x1,i1 . . . xr,irf(a1,i1 , . . . , ar,ir )

=
∑

i1,...,ir

x1,i1 . . . xr,irci1...ir ,

where ci1...ir = f(a1,i1 , . . . , ar,ir ).

Conversely, suppose the existence of constants as described in the theorem. For any index j ∈ {1, . . . , r},
we have for addition that

f(x1, . . . , xj + x′j , . . . , xr) =
∑

i1,...,ir

xi1 . . . (xij + x′ij ) . . . xirci1...ir

=
∑

i1,...,ir

xi1 . . . xij . . . xirci1...ir +
∑

i1,...,ir

xi1 . . . x
′
ij . . . xirci1...ir

= f(x1, . . . , xj , . . . , xr) + f(x1, . . . , x
′
j , . . . , xr),

and for scalar multiplication, we have that

f(x1, . . . , λxj , . . . , xr) =
∑

i1,...,ir

xi1 . . . λxij . . . xirci1...ir

= λ
∑

i1,...,ir

xi1 . . . xij . . . xirci1...ir

= λf(x1, . . . , xj , . . . , xr) ,

and therefore f is indeed multi-linear.

The scalars ci1...ir are sometimes referred to [1] as structure constants of f with regards to the bases
(ai1)i1 , . . . , (air )ir . They are also sometimes referred to [3] as coefficients or components or coordinates.

This leads directly to the following result:

Theorem 2. Let X1, . . . , Xp be finitely generated free modules with respective bases (a1,i)1≤i≤n1
, . . . , (ar,i)1≤i≤nr

.
The functions

vi1...ip : X1 × · · · ×Xp → K

(x1, . . . , xp) 7→ x1,i1 . . . xp,ip
,

where each xk in Xk is written as
∑nk

i=1 xk,iak,i, form a basis of L(X1, . . . , Xp;K).
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Proof. By the previous theorem, any element of L(X1, . . . , Xp;K) can be written as a linear combination of
the vi1...ip :

f : X1 × · · · ×Xp → K

(x1, . . . , xp) 7→
∑

i1,...,ip

ci1...ipvi1...ip(x1, . . . , xp) ,

and so the family generates L(X1, . . . , Xp;K).
Suppose that there exists a family of coefficents (λi1...ip)1≤i1≤n1,...,1≤ip≤n1 such that∑

i1...ip

λi1...ipvi1...ip = 0L(X1,...,Xp;K).

Then for any p-tuple of indices (j1, . . . , jp), with 1 ≤ j1 ≤ n1, . . . , 1 ≤ jp ≤ np, we have that

∑
i1...ip

λi1...ipvi1...ip(a1,j1 , . . . , ap,jp) = 0K .

But vi1...ip(a1,j1 , . . . , ap,jp) = δi1,j1 . . . δip,jp , that gives∑
i1...ip

λi1...ipvi1...ip(a1,j1 , . . . , ap,jp) = λj1...jp = 0K .

As such, all the coefficients λj1,...,jp must be null, and therefore the family (vi1...ip)1≤i1≤n1,...,1≤ip≤n1 is
linearly independent.

Remark 1. Let us denote (ak,ik)1≤ik≤nk
the dual basis of X∗k associated with the basis (ak,ik)1≤ik≤nk

of Xk.
Then, for any p-tuple (x1, . . . , xp) of X1 × · · · ×Xp, we have

vi1...ip(x1, . . . , xp) =

p∏
k=1

ak,ik(xk) .

1.3 Matrices

1.3.1 Matrices as arrays of scalars

A matrix can be seen simply as a double-indexed family of elements of the commutative unitary ring K, for
example A = (αij)1≤i≤n;1≤j≤m, which when represented visually would take the form

A =

α11 . . . α1m

...
. . .

...
αn1 . . . αnm

 .

We note Mn,m(K) the set of matrices with n lines and m columns with coefficients in K, and more
simply Mn(K) the set Mn,n(K).

It is clear that Mn,m(K) can be identified to Knm, so that it has a natural structure of K-module.
Moreover, a multiplication is defined between elements of Mn,m(K) and Mm,p(K):

for A = (αij)1≤i≤n;1≤j≤m ∈ Mn,m(K) and B = (βjk)1≤j≤m;1≤k≤p ∈ Mm,p(K), the matrix AB is the
element C = (γik)1≤i≤n;1≤k≤p of Mn,p(K) whose coefficients are given by

γik =

m∑
j=1

αijβjk .
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1.3.2 Transpose of a matrix

Definition 20. If A = (aij)1≤i≤m;1≤j≤n is an m× n matrix, written

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 ,

then we define the transpose of A as the matrix At = (aji)1≤j≤n:1≤i≤m, written

At =

a11 . . . am1

...
. . .

...
a1n . . . amn

 .

The following property can be easily verified:

Proposition 7. If A is a matrix of Mn,m(K) and B a matrix of Mm,p(K), then (AB)t = BtAt.

Definition 21. A square matrix A = (aij)1≤i,j≤n is said symmetric if A = At, that is if aij = aji for each
(i, j) such that 1 ≤ i, j ≤ n and i 6= j.

1.3.3 Matrices and linear maps

Linear maps between two finitely generated free K-modules can be represented by matrices.

Consider a linear map f : M → N , where M is a finitely generated free K-module with basis B1 =
(aj)1≤j≤m, and N is another finitely generated free K-module with basis B2 = (bi)1≤i≤n. As f is linear, the
image by f of any element x ∈ M is uniquely determined by the images by f of the elements of the basis
(aj)1≤j≤m:

f(aj) =

n∑
i=1

αijbi.

Indeed, let x =
∑m
j=1 xjaj be a vector of M . Then we can write

f(x) =

m∑
j=1

xjf(aj) =

m∑
j=1

xj

n∑
i=1

αijbi .

We can visually represent the vector x as the m × 1 dimensional matrix of its coordinates with regards
to the basis B1 of M :

X =


x1
x2
...
xm

 ,

and let us denote by A the matrix

A =

α11 . . . α1m

...
. . .

...
αn1 . . . αnm

 .
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Then f(x) is represented with regards to the basis B2 as

Y = AX =

α11 . . . α1m

...
. . .

...
αn1 . . . αnm


x1

...
xm

 =


∑m
j=1 xjα1j

...∑m
j=1 xjαnj

 .

We say that A is the matrix of f with regards to the bases B1 and B2, that we write A = MatB1,B2
(f).

In the particular case where f is a linear form, that is N = K, we will always choose B2 = (1), and we
will note A = MatB1(f)

In the previous notation, the operations on matrices are defined in such a way that we get easily the
following equalities for f1 ∈ L(M ;N), f2 ∈ L(M ;N) and λ ∈ K:

MatB1,B2
(f1 + f2) = MatB1,B2

(f1) +MatB1,B2
(f2) ,

MatB1,B2
(λf1) = λMatB1,B2

(f1) .

Finally, if P is a third finitely generated free K-module with basis B3, and if f ∈ L(M ;N) and g ∈
L(N ;P ), then

MatB1,B3(g ◦ f) = MatB2,B3(g)MatB1,B2(f) ,

and this is the main justification for the definition of the product of matrices.

1.4 Covariance and contravariance

We suppose that M is a finitely generated free K-module.

1. Contravariant coordinates

It can be proved that all the bases of M involve the same number n of vectors, called rank of M
(dimension if K is a field). Let B = (a1, . . . , an) and B′ = (b1, . . . , bn) be two bases of M .

For the sake of convenience, we represent these bases as row matrices whose components are vectors.
Then there exists an invertible matrix P of Mn(K) such that

(b1 . . . bn) = (a1 . . . an) P .

Let x be a vector of M , decomposed in these bases in x =
∑n
i=1 xiai =

∑n
i=1 x

′
ibi. In terms of matrices,

this gives

(a1 . . . an)


x1
.
.
.
xn

 = (b1 . . . bn)


x′1
.
.
.
x′n

 = (a1 . . . an) P


x′1
.
.
.
x′n

 ,

which implies that 
x′1
.
.
.
x′n

 = P−1


x1
.
.
.
xn

 .

Hence, the matrix P gives B′ from B, but P−1 gives the coordinates x′i from the coordinates xi. For
this reason, the coordinates of a vector x in a basis of M are said contravariant.
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2. Covariant coordinates

Let us now consider the dual of M , that is the space M∗ = L(M ;K) of linear forms from M to the
ring of scalars K.

To the basis B = (a1, . . . , an) of M are associated n elements aj of its dual, defined by aj(ai) = δi,j .
That means that aj(

∑n
i=1 xiai) = xj and the linear form aj gives the j-th coordinate of the vectors

in basis B. It is easily seen that (a1, . . . , an) is a basis of M∗, called dual basis of B, and therefore M∗

is also of finite type. Remark in particular that M and M∗ have the same rank n.

Moreover, the K-module M∗∗ = (M∗)∗ is called the bi-dual of M , and the map φ defined on M by

x ∈M 7→ φx ∈M∗∗ ,

where φx(u) = u(x) for any linear form u ∈M∗, is a linear map from M to M∗∗. The image under φ
of the basis B is the dual basis of the dual basis of B, and it turns out that φ realizes an isomorphism
of K-modules between M and M∗∗.

Remark 2. In the more general case - that is without the hypothesis that M is a finitely generated free
K-module - the map φ realizes a natural morphism from M to M∗∗, which can be neither injective
nor sujective.

Let u be an element of M∗. The matrix of u in the basis B is the row matrix MatB(u) =
(
α1 ... αn

)
,

where u(ai) = αi. The map ψB from M∗ to M defined by

u ∈M∗ 7→ ψB(u) = α1a1 + · · ·+ αnan ∈M

is clearly a non canonical isomorphism between M∗ and M (depending on the choice of B).

In the notation of the previous paragraph, it is well known that

MatB′(u) = MatB(u) P .

Accordingly, settingMatB′(u) =
(
β1 ... βn

)
, the vectors ψB(u) =

∑n
i=1 αiai and ψB′(u) =

∑n
i=1 βibi

of M are related by the matrix equality(
β1 ... βn

)
=
(
α1 ... αn

)
P ,

that is 
β1
.
.
.
βn

 = P t


α1

.

.

.
αn

 .

Hence, the matrix P gives B′ from B, but P t gives the coordinates βi from the coordinates αi. For
this reason, the coordinates of the vectors associated to linear forms on M are said covariant.

1.5 Singular value decomposition of matrices

We will first introduce the notion of orthogonal matrices, which will be used in the singular value decompo-
sition. We restrain our studies to the case of matrices over the field of real numbers. For the complex case,
the transpose of a matrix should be replaced with its conjugate transpose, and orthogonal matrices with
unitary matrices.
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1.5.1 Orthogonal matrices

For this subsection, we will place ourselves in Mn(R), which we will also sometimes note Rn×n.

Definition 22. An real inner product on a finite dimensional vector space over the field R is a mapping

V × V → R
(x, y) 7→ 〈x, y 〉

such that, for all x, x′, y ∈ V and λ ∈ R,

• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 only if x = 0,

• 〈λx, y〉 = λ〈x, y〉,

• 〈x, y〉 = 〈y, x〉,

• 〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉.

Definition 23. A real inner product space is a real vector space equiped with an inner product.

As a consequence of the so called Cauchy-Schwarz inequality, it can be proved that a norm associated
with an inner product is given by ‖x‖ =

√
〈x, x〉.

The essential notion of orthogonality is closely linked to the scalar product.

Definition 24. Let V be a real inner product space.

• Two vectors x and y of V are said to be orthogonal if 〈x, x〉 = 0.

• A set or a family of vectors of V is said orthonormal if all vectors are of norm one, and any two
distinct vectors are orthogonal.

The most common inner product on Rn is given for X ∈ Rn and Y ∈ Rn by

〈X,Y 〉 = Xt Y,

identifying elements of Rn with column matrices. We will only be considering this inner product from now
on.

Definition 25. Let A be a square matrix of Mn(R).

• The matrix A is said column orthogonal if its set of columns consitutes an orthogonal set of vectors
of Rn.

• The matrix A is said row orthogonal if its set of rows consitutes an orthogonal set of vectors of Rn.

The following proposition enables to introduce orthogonal matrices.

Proposition 8. • A matrix A of Mn(R) is row orthogonal if and only if it is column orthogonal.

• Furthermore, the matrix is orthogonal (that is row orthogonal, or in an equivalent manner column
orthogonal) if and only if its transpose is orthogonal.
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• The inverse of an orthogonal matrix is equal to its transpose.

Proof. Suppose that A is an n× n column orthogonal real matrix, with A(1), . . . , A(n) being the columns of
A. We must then have that At is a row orthogonal matrix. When we mutliply the two, we find that the ij
index of AtA is simply 〈A(i), A(j)〉. As each A(i) is of norm one, and they are all orthogonal, 〈A(i), A(j)〉 = δi,j
and so AtA = In. This means that A−1 = At, and as such, since A At = In, the matrix A must also be row
orthogonal.

1.5.2 Singular value decomposition

Singular value decomposition can be seen as a generalization of eigenvalue decomposition to all matrices,
not just non-defective square matrices.

We will first recall some definitions of eigenvectors and eigenvalues.

Definition 26. Let A be a matrix of Mn(R). An eigenvector of A is a nonzero vector v of Rn such that
Av = λv, with λ being a scalar which is referred to as the eigenvalue of A associated with v.

In order to prove the main result (Theorem 3), we shall admit the following spectral result on symmetric
real matrices.

Proposition 9 (Spectral Theorem). If A is a symmetric matrix of Mn(R), then there exists an orthogonal
matrix P and a diagonal matrix D such that

A = PDP−1, (1.1)

the diagonal elements of D being the eigenvalues of A.

We note that because P is orthogonal, the equality 1.1 is equivalent to A = PDP t.
This spectral theorem says that there exists an orthonormal basis of Rn made up of eigenvectors of A.

Moreover, if the eigenvalues of A are ≥ 0, the symmetric matrix A is commonly referred to as a semi-definite
positive symmetric matrix.

Definition 27. Let A be a real m×n matrix. A singular value decomposition of A is any factorization

A = U Σ V t ,

where

• U is an orthogonal m×m matrix,

• Σ is an m × n matrix with non zero entries only on the diagonal (ie Σij = 0 for all (i, j) not in
{(1, 1), (2, 2), . . . , (m,m)}),

• V is an n× n orthogonal matrix.

Theorem 3. Every real m× n matrix admits a singular value decomposition.

Proof. Let A be a real m× n matrix.
The matrix AtA is a symmetric n × n matrix, and as such there exists an orthogonal matrix V and a

diagonal matrix Λ such that AtA = V ΛV t. Let V (1), . . . , V (n) be the columns of V , which are eigenvectors
of AtA, and λ1, . . . , λn be the diagonal elements of Λ, which are the eigenvalues of AtA.
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First of all, let us remark that these eigenvalues are ≥ 0. Indeed, for each column vector X of Rn,
eigenvector of AtA related to an eigenvalue λ, we have XtAtAX = (AX)tAX = 〈AX,AX〉 = XtλX =
λ〈X,X〉 ≥ 0, that gives λ ≥ 0: the matrix AtA is semi-definite positive.

Since the columns of V are eigenvectors of AtA, we have that AtAV (i) = λiV
(i), for each i ∈ {1, . . . , n}.

Furthermore, since these columns are orthogonal, we have

(V (i))tAtAV (j) = (V (i))tλjV
(j) = λjδi,j .

Define σi =
√
λi and suppose that r of the σi, let us say σ1, . . . , σr, are nonzero. For i = 1, . . . , r let

U (i) = AV (i)/σi.

The U (i) form an orthonormal family of r vectors of Rm. We prolong this family into an orthonormal basis
of Rm, and put those vectors as columns of a matrix U . We then have that the ij coordinate of the matrix
U tAV is

(U (i))tAV (j) = (V (j))tAtU (i) = (V (j))tAtAV (i)/σi = σiδi,j .

As such, setting Σ = U tAV , we have A = UΣV t.

1.5.3 The Moore-Penrose generalized inverse

Not every real matrix is invertible; however it is possible to define for every real matrix a generalized inverse
or pseudoinverse that has some useful properties. Its existence is a nice application of the singular value
decomposition.

Definition 28. Let A ∈ Rm×n be a matrix. A generalized inverse, or pseudoinverse of A is any n×m
matrix, noted A+, that satisfies the following conditions, sometimes called the Moore-Penrose conditions:

• AA+A = A,

• A+AA+ = A+,

• (AA+)t = AA+,

• (A+A)t = A+A.

Remark 3. It can be proved that the four Moore-Penrose conditions are also equivalent to the following ones,
which are usefull in calculations:

• A+AAt = At,

• A+(A+)tA = A+,

• At(A+)tA+ = A+,

• AtAA+ = At.

The following result enables to show the existence of a generalized inverse for any real matrix ; it can be
easily verified by a simple calculation.

Proposition 10. Let A ∈ Rm×n be a real matrix with the singular value decomposition

A = UΣV t.

Then the matrix
V Σ+U t ,

where Σ+ is obtained from Σ by inversing each non-zero element of its diagonal, satisfies the Moore-Penrose
conditions, and is therefore a generalized inverse of A.
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We then prove the uniqueness.

Proposition 11. Let A ∈ Rm×n be a real matrix. Then A admits a unique pseudoinverse.

Proof. If two matrices X and Y satisfy these conditions, then

X = XAX = X(AX)t = XXtAt = XXtAtAY = XAY,

and in an similar way,
Y = Y AY = XAY ,

thus X = Y .
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Chapter 2

An introduction to tensors

Throughout the chapter, K will refer to a commutative unitary ring.

We will first use an approach detailed in [3], where tensors are defined in the context of multi-linear forms
- this approach is often used by physicists. We will then use a more abstract approach detailed in [10] and
[9], and finally link the two approaches in the final section.

2.1 Tensor product of multi-linear forms

2.1.1 General definition

Definition 29. Let r be a positive integer, X11, . . . , X1p1 , . . . , Xr1, . . . , Xrpr K-modules and

u1 : X11 × · · · ×X1p1 → K,

...

ur : Xr1 × · · · ×Xrpr → K

multi-linear forms on said modules. We define the tensor product of u1, ..., ur as the map

u1 ⊗ · · · ⊗ ur : (X11 × · · · ×X1p1)× · · · × (Xr1 × · · · ×Xrpr ) −→ K

such that for all (x11, . . . , x1p1 , . . . , xr1, . . . , xrpr ) ∈ (X11 × · · · ×X1p1)× · · · × (Xr1 × · · · ×Xrpr ),

u1 ⊗ · · · ⊗ ur (x11, . . . , x1p1 , . . . , xr1, . . . , xrpr ) = u1(x11, . . . , x1p1) . . . ur(xr1, . . . , xrpr ).

The multi-linearity of u1, . . . , ur allows us to immediately deduce the following property.

Proposition 12. If u1, . . . , ur are multi-linear forms, then u1 ⊗ · · · ⊗ ur is a multi-linear form.

Proposition 13. The tensor product mapping

L(X11, . . . , X1p1 ;K)× · · · × L(Xr1, . . . , Xrpr ;K)→ L(X11, . . . , X1p1 , . . . , Xr1, . . . , Xrpr ;K)

(u1, . . . , ur) 7→ u1 ⊗ · · · ⊗ ur

is multi-linear.
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Proof. We will prove the result for r = 2 in order to simply notation; moreover, we restrict ourselves to
the case of the left-handside, but the right-handside case is very similar. Let u, u′ ∈ L(X1, . . . , Xp;K) and
v ∈ L(Y1, . . . , Yq;K) be multi-linear forms, and λ, µ be scalars in K. We have that

[(λu+ µu′)⊗ v](x1, . . . , xp, y1, . . . , yq)

= (λu+ µu′)(x1, . . . , xp)v(y1, . . . , yq)

= λu(x1, . . . , xp)v(y1, . . . , yq) + µu′(x1, . . . , xp)v(y1, . . . , yq)

= [λu⊗ v](x1, . . . , xp, y1, . . . , yq) + [µu′ ⊗ v](x1, . . . , xp, y1, . . . , yq) ,

for all x1, . . . , xp, y1, . . . , yq in X1, . . . , Xp, Y1, . . . , Yq, hence the result.

2.1.2 Case of finitely generated free modules

We suppose thatX1, . . . , Xp are finitely generated free modules with respective bases (a1,i)1≤i≤n1
, . . . , (ar,i)1≤i≤nr

.

We can reformulate Theorem 2 using this latter definition, in the following manner:
If f : X1 × · · · ×Xp → K is a multi-linear form, then there exist constants ci1...ip in the scalar ring K such
that

f =
∑
i1...ip

ci1...ipa
1,i1 ⊗ · · · ⊗ a1,ip ,

where a1,i1 , . . . , ap,ip are respectively elements of the dual bases (a1,j1)1≤j1≤n1
, . . . , (ap,jp)1≤jp≤np

.
In other words, the functions

vi1,...,ip : X1 × · · · ×Xp → K (x1, . . . , xp) 7→ x1,i1 . . . xp,ip

can be written
vi1...ip = a1,i1 ⊗ · · · ⊗ ap,ip .

We can also reformulate Theorem 1: a map f : X1 × · · · ×Xp → K is multi-linear if and only if there exist
constants ci1,...ip in K such that, for any p-tuple (x1, . . . , xp),

f(x1, . . . , xp) =
∑

i1,...,ip

ci1...ipa
1,i1 ⊗ · · · ⊗ ap,ip(x1, . . . , xp).

2.2 Tensors

We will now introduce tensors as a particular type of multi-linear form, in the way commonly used by
physicists. The following definition will refer to the terminology of covariance and contravariance introduced
in section 1.4.

2.2.1 General definition

Definition 30. A tensor of class
(
p
q

)
or tensor of covariant index p and contravariant index q

on the module M is a (p + q)-linear form on (M∗)p × Mq, in other words an element of the module
L(M∗, . . . ,M∗,M, . . . ,M ;K) (with p occurrences of M∗ and q occurrences of M). We note T pq (M) the

module of tensors of class
(
p
q

)
on M .

Remark 4. 1. If u ∈ T pq (M) and v ∈ T rs (M), then u ⊗ v can be seen as a tensor of class
(
p+r
q+s

)
. Indeed,

u⊗ v is a multi-linear form on (M∗)p ×Mq × (M∗)r ×Ms, which is isomorphic to (M∗)p+r ×Mq+s.
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2. The tensor product is generally not commutative: if f and g are two multi-linear forms, then f ⊗
g(x, y) = f(x)g(y), while g⊗f(x, y) = g(x)f(y), when these two expressions make sense (it is possible,
depending on the domains of f and g, for f(x)g(y) to be defined while f(y)g(x) is not defined).

Remark 5. Let us recall that there is a natural morphism from M to its bidual (see Remark 2). Given
(x1, . . . , xp, u1, . . . , uq) in Mp × (M∗)q, this allows to consider tensors of T pq (M) written in the form x1 ⊗
· · · ⊗ xp ⊗ u1 ⊗ · · · ⊗ uq, that is the multi-linear form on (M∗)p ×Mq whose value at (v1, . . . , vp, y1, . . . , yq)
is the scalar v1(x1) . . . vp(xp)u1(y1) . . . uq(yq).

2.2.2 Tensors over a finitely generated free module

Let T be a tensor of type
(
p
q

)
over a finitely generated free module M . Suppose that (a1, . . . , an) is a basis

of M and (a1, . . . , an) the associated dual basis of M∗.
Following Theorem 1, for any set of linear forms u1, . . . , up and vectors x1, . . . , xq, we have that

T (u1, . . . , up, x1, . . . , xq) =
∑

i1,...,ip ; j1,...,jq

u1,i1 . . . up,ipx1,j1 . . . xq,jqT (ai1 , . . . , aip , aj1 , . . . , ajq ),

where each uk is decomposed as
∑n
i=1 uk,ia

i, and each xk as
∑n
j=1 xk,jaj .

We can therefore see that any such tensor T is uniquely determined by the values of T (ai1 , . . . , aip , aj1 , . . . , ajq ),
that we note

T
i1,...,ip
j1,...,jq

and refer to them as structure constants, or components, or coefficients, or coordinates, of T with
regards to the chosen basis, as was done in a more general case in section 1.2.2.

Recall that because M is finitely generated, it is isomorphic to its bi-dual M∗∗. Indeed, as was seen
in section 1.4, the dual basis of the basis (ai)1≤i≤n is formed by the linear forms (aj)1≤j≤n such that
aj(ai) = δi,j . As such, the family of linear forms on M∗

fai : M∗ → K

u 7→ u(ai)

forms the dual basis of the basis (aj)1≤j≤p of M∗, since fai(a
j) = δi,j . We can identify each fai in M∗∗ with

the corresponding ai in M , and as such M∗∗ is isomorphic to M .
The following theorem is an immediate consequence of Theorem 2 and the previous identification.

Theorem 4. Let M be a module of finite type, (a1, . . . , an) a basis of M and (a1, . . . , an) the associated
dual basis of M∗ ; then the elements of the form

ai1 ⊗ · · · ⊗ aip ⊗ aj1 ⊗ · · · ⊗ ajq

constitute a basis of T pq (M).

2.3 Tensor product of K-modules

The two previous sections introduced tensor products of multi-linear forms and tensors and mutli-linear
forms, using the fact that there is a multiplication defined on the scalar ring K. We will now consider
the more general notion of the tensor product of modules, which can be used to combine elements of any
K-modules, and in particular multi-linear maps between K-modules that are not necessarily multi-linear
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forms, ie that do not necessarily map to the scalar ring K. Because it can be used to combine elements
of arbitrary vector spaces, the tensor product of modules when applied to individual elements is sometimes
called the outer product.

We shall also study the links between this definition and the previous notions when finitely generated
free modules are involved.

2.3.1 Construction of the tensor product

Let M and N be two K-modules. One way of approaching the tensor product of two modules is to view it
as a way to code a bilinear map on M ×N as a linear map on a new module M ⊗N . So our goal will be,
given a pair of K-modules M and N , to construct a new K-module M ⊗N and a function π from M ×N
to M ⊗N such that for every K-module R and every bilinear map φ : M ×N −→ R, there exists a unique
φ̄ from M ⊗N to R such that φ = φ̄ ◦ π.

We will prove the existence of such an object by constructing it, and then deduce its uniqueness up to
isomorphism.

To construct M ⊗N , we start by taking the free module over M ×N , that is

FM×N = {
∑

(m,n)∈M×N

λm,n(m,n) ; λ ∈ AM×N and #{(m,n) ∈M ×N ; λ(m,n) 6= 0} < +∞} .

We consider the sub-module G of FM×N that consists of all the finite linear combinations of elements of
FM×N that can be written

(m+m′, n)− (m,n)− (m′, n)

a(m,n)− (am, n)

a(m,n)− (m, an)

(m,n+ n′)− (m,n)− (m,n′),

for some a ∈ K, m, m′ ∈ M and n, n′ ∈ N . Next, we will simply define M ⊗N = FM×N/G and check
that it works.

Here, we note (m,n) for the class of (m,n) in FM×N/G. We have

(m+m′, n)

= (m+m′, n)− (m,n)− (m′, n) + (m,n) + (m′, n)

= 0 + (m,n) + (m′, n) = (m,n) + (m′, n),

and by a similar process, we find

(m,n+ n′) = (m,n) + (m,n′) .

For scalar multiplication, we have

(am, n) = (am, n) + 0

= (am, n)− a(m,n) + a(m,n)

= 0 + a(m,n) = a(m,n) = a(m,n),

and similarly
(m, an) = a(m,n) = a(m,n) .

Let i : M × N → FM×N be the canonical injection and let π0 : FM×N → FM×N/G be the canonical
quotient projection. The previous paragraph shows that the mapping

π = π0 ◦ i : M ×N −→ FM×N/G
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is bilinear.
Now if we take a bilinear map φ : M ×N −→ R, where R is any K-module, we can completely define a

corresponding map φ̃ extending φ to FM×N

φ̃ : FM×N → R∑
(m,n)∈FM×N

λm,n(m,n) 7→
∑

(m,n)∈FM×N

λm,nφ(m,n),

where both sums are over a finite number of non-zero terms, that is λm,n = 0 for all but a finite number of
(m,n).

This map φ̃ is linear, as for all scalars µ1 and µ2 and for all elements
∑

(m,n)∈M×N λm,n(m,n) and∑
(m,n)∈M×N λ

′
m,n(m,n) of FM×N ,

φ̃(µ1

∑
(m,n)∈M×N

λm,n(m,n) + µ2

∑
(m,n)∈M×N

λ′m,n(m,n)) = φ̃(
∑

(m,n)∈M×N

(µ1λm,n + µ2λ
′
m,n)(m,n))

=
∑

(m,n)∈M×N

(µ1λm,n + µ2λ
′
m,n)φ(m,n) =

∑
(m,n)∈M×N

µ1λm,nφ(m,n) +
∑

(m,n)∈M×N

µ2λ
′
m,nφ(m,n)

= µ1

∑
(m,n)∈M×N

λm,nφ(m,n) + µ2

∑
(m,n)∈M×N

λ′m,nφ(m,n) = µ1φ̃(
∑

(m,n)∈M×N

λm,n(m,n)) + µ2φ̃(
∑

(m,n)∈M×N

λ′m,n(m,n)),

where as before only a finite number of λm,n and λ′m,n are non nul.

By bilinearity of φ, we have kerφ̃ ⊇ G. Thus φ̃ is factorisable via the quotient: there exists a linear map

φ̄ : FM×N/G→ R∑
i∈I

λi(mi, ni) 7→ φ̃(
∑
i∈I

λi(mi, ni))

such that for all (m,n) in M ×N

φ(m,n) = φ̃(m,n) = φ((m,n)) = φ ◦ π(m,n) ,

which is exactly the property we wanted.
We have successfully shown the existence of a module M ⊗N such that every bilinear form on M ×N

can be uniquely factored through the tensor module via a linear map; now we will show that it is unique up
to isomorphism.

Suppose that there exists another such module, which we will call P , that has the same property. Let
p be the bilinear map from M × N onto P such that any bilinear map φ on M × N can be factored via a
unique linear map φ̂ such that φ = φ̂ ◦ p.
Then there is a unique linear map π̂ : P −→ M ⊗N such that π = π̂ ◦ p, and there is also a unique linear
map p̄ : M ⊗N −→ P such that p = p̄ ◦ π. Therefore we have

π = π̂ ◦ p = (π̂ ◦ p̄) ◦ π ,
p = p̄ ◦ π = (p̄ ◦ π̂) ◦ p .

But we also know, by definition of M ⊗ N and of P , that there is a unique function from P to P that
factors p, because every bilinear function from M×N to another module can be uniquely factored through P .
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Similarly, we have a unique function from M ⊗N into itself that factors π. Now these must both obviously
be identities, so we have that π̂ and p̄ are one-to-one and inverses of one another. In conclusion, π̂ and p̄
realize an isomorphism between M ⊗N and P .

This concludes the uniqueness of M ⊗N up to an isomorphism.

We have just shown the following result:

Theorem 5. Let M and N be K-modules. Up to an isomorphism, there exists a unique K-module M ⊗N ,
and a unique bilinear map π : M × N → M ⊗ N , such that for any K-module R, and any bilinear map
φ : M ×N → R, there is a unique linear map φ : M ⊗N → R such that φ ◦ π = φ.

Remark 6. This is known as the universal property of the tensor product of K-modules.

Remark 7. The converse of the result, that if φ is a function on M ×N factored though a linear map on the
tensor product module (that is of the form ψ ◦ π with ψ linear) then it is bilinear, is also true. Indeed, by
bilinearity of π and linearity of ψ, we have

φ(λm+ µm′, n) = ψ((λm+ µm′)⊗ n) = ψ(λm⊗ n+ µm′ ⊗ n)

= λψ(m⊗ n) + µψ(m′ ⊗ n) = λφ(m,n) + µφ(m′, n) ,

and similarly on the right hand side.

Definition 31. Given M and N two K-modules, their tensor product M ⊗N is defined as the K-module
quotient of the free module on M ×N by the previously defined submodule G, that is M ⊗N = FM×N/G.

In the future, we will write m⊗n for the class of (m,n) in M⊗N . As mentioned before, in some sources,
the tensor product of two elements of different modules is sometimes also called the outer product. We give
a definition using this terminology here.

Definition 32. If M and N are K-modules we define the outer product of m ∈ M and n ∈ N to be
m⊗ n ∈M ⊗N .

Figure 2.1 illustrates the construction of this space with a commutative diagram, where π = π0 ◦ i.

FM×N R

M ×N

M ⊗N = FM×N/G

φ

φ̃

φ̄

i

π0

Figure 2.1: Commutatif diagram

The following proposition generalizes the theorem and remark to the case of p K-modules.
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Proposition 14. Let M1, . . . ,Mp be K-modules. We define by induction

M1 ⊗ · · · ⊗Mp = M1 ⊗ (M2 ⊗ · · · ⊗Mp).

Let f be a function from M1×· · ·×Mp into some K-module R. Then f is p-linear if and only if there exists
a linear map f̄ : M1 ⊗ · · · ⊗Mp → R such that f(x1, . . . , xp) = f̄(x1 ⊗ · · · ⊗ xp) for all (xi)i in (Mi)i.

Proof. We proceed by induction. The initial case, for p = 2 is already proven. Suppose the result true for
p − 1 ≥ 2, and let f be a function from M1 × · · · ×Mp into R. Then if for each xp ∈ Mp we call fxp

the
function from M1 × · · · ×Mp−1 to R which associates to each (x1, . . . , xp−1) the element f(x1, . . . , xp−1, xp)
of R, then we can factor this function through M1 ⊗ · · · ⊗Mp−1 into fxp

. And then we can simply define

f(x1 ⊗ · · · ⊗ xp−1 ⊗ xp) = ¯fxp(x1 ⊗ · · · ⊗ xp−1).

Proposition 15. The tensor product of K-modules is associative up to isomorphism: we have

L⊗ (M ⊗N) ' (L⊗M)⊗N .

Proof. For any n in N we define the mapping

φn : L×M → L⊗ (M ⊗N)

(l,m) 7→ l ⊗ (m⊗ n).

This mapping is bilinear, so we can factor it via

φn : L⊗M → L⊗ (M ⊗N)

l ⊗m 7→ l ⊗ (m⊗ n).

Since the mapping n 7→ φn is linear, the mapping

Φ : (L⊗M)⊗N → L⊗ (M ⊗N)

(l ⊗m)⊗ n 7→ φn(l ⊗m)⊗ n = l ⊗ (m⊗ n)

is linear.
Similarly, we can fix an l in L and construct

ψl : M ×N → (L⊗M)⊗N
(m,n) 7→ (l ⊗m)⊗ n

which we then factor via

ψl : M ⊗N → (L⊗M)⊗N
m⊗ n 7→ (l ⊗m)⊗ n.

Once again, the mapping l 7→ ψl is linear so this makes the mapping

Ψ : L⊗ (M ⊗N)→ (L⊗M)⊗N
l ⊗ (m⊗ n) 7→ ψl(m⊗ n) = (l ⊗m)⊗ n

linear.
We have that Φ and Ψ are inverses of each other, so they are bijections, hence the result.
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The following proposition gives a commutative property of the tensor product of K-modules.

Proposition 16. There is a unique isomorphism from L⊗M to M ⊗L that sends l⊗m to m⊗ l for each
l in L and each m in M .

Proof. Let φ : L×M →M ⊗L be the bilinear function that to each (l,m) associates m⊗ l in M ⊗L. By the
universal property proved in Theorem 5, there is a unique φ̄ : L⊗M →M⊗L such that φ̄(l⊗m) = φ(l,m) =
m⊗ l. Similarly, take ψ : M × L→ L⊗M to be the bilinear function that to each (m, l) associates l ⊗m.
Once again, by the universal property proved in Theorem 5, there is a unique linear map ψ̄ : M⊗L→ L⊗M
such that ψ̄(m⊗ l) = ψ(m, l) = l ⊗m.

We have ψ̄ ◦ φ̄ = idL⊗M and φ̄ ◦ ψ̄ = idM⊗L, hence L⊗M and M ⊗ L are isomorphic.

Remark 8. It is possible for the tensor product of two non-trivial K-modules to be trivial. For example, if
M⊗N = Z/2Z⊗Z/3Z is isopmorphic to {0} as for anym and n we havem.1M⊗n.1N = mn(3−2)(1M⊗1N ) =
mn[(3.1M ⊗1N )− (1M ⊗2.1N )] = mn[(0.1M ⊗1N )− (1M ⊗0.1N )] = mn[0(1M ⊗1N )−0(1M ⊗1N ) = 0M⊗N .

2.3.2 Properties

We will now list general properties of the tensor product of K-modules.

From the definition of M ⊗N we get immediately the following proposition.

Proposition 17. The tensor product M ⊗N is generated by the set of the ”pure tensors” m⊗n for m in
M and n in N .

We have shown that π is bilinear, so we get the following equalities:

Proposition 18. For any modules M and N , and any elements m ∈M and n ∈ N ,

a(m⊗ n) = (am)⊗ n = m⊗ (an) ,

(m+m′)⊗ n = m⊗ n+m′ ⊗ n ,

and similarly for the right side.

Moreover, Theorem 5 has the following important corollary.

Proposition 19. For any K-module R, the module L(M,N ;R) of bilinear maps from M × N to R is
isomorphic to the module L(M ⊗N ;R) of linear maps from M ⊗N to R.

Proof. In the notation of Theorem 5, consider the map

L : L(M,N ;R) −→ L(M ⊗N ;R) ,

φ 7−→ φ̄

clearly well defined on all elements of L(M,N ;R). The map L is linear, as for all λ ∈ K and for all
φ, φ1, φ2 ∈ L(M,N ;R)

L(φ1 + φ2) = φ1 + φ2 = φ̄1 + φ̄2 = L(φ1) + L(φ2)

L(λφ) = λφ̄ = λL(φ)

by the universal property of M ⊗N . Indeed, φ1 + φ2 can be factored via φ1 + φ2 since it is a bilinear map
on M × N . As φ1 can be factored via φ1 and φ2 can be factored via φ2, φ1 + φ2 can also be factored via
φ1 + φ2. But then φ1 + φ2 = φ1 + φ2 as the factorisation is unique.

Similarly, we can factor λφ through λφ and through λφ, hence the latter two mappings are the same.
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Finally, to show that L is a bijection, take any f ∈ L(M ⊗N ;R), and consider the function

φ : M ×N → R

(m,n) 7→ f(m⊗ n).

This φ is bilinear, as for all λ ∈ K, m ∈M and n ∈ N ,

φ(m+m′, n) = f((m+m′)⊗ n) = f(m⊗ n+m′ ⊗ n) = f(m⊗ n) + f(m′ ⊗ n) = φ(m,n) + φ(m′, n)

φ(λm, n) = f(λm⊗ n) = λf(m⊗ n) = λφ(m,n),

and similarly on the right hand side. To use the language of Theorem 5 we have φ = f ◦ π.
This function is also unique, as any other function with the same property would have the same image

for all elements of M × N , and as such L is an isomorphism, since every element of L(M ⊗ N ;R) has a
unique antecedent by L.

The universal property of M⊗N implies that every bilinear φ on M×N can be associated with a unique
linear f on M ⊗N . Since we have just shown that every linear function on M ⊗N has a unique antecedent,
hence the result.

Remark 9. By the previous proposition, the module L(M ⊗ N ;R) is isomorphic to L(M,N ;R). Thus, by
proposition 6, the modules L(M ;L(N ;R)) and L(M ⊗N ;R) are also isomorphic.

Following Proposition 14, this can be generalized to p-linear maps over p modules.

2.4 Links between diverse notions of tensor product and tensors

2.4.1 A mapping from M ⊗ · · · ⊗M ⊗M∗ ⊗ · · · ⊗M∗ to T p
q (M)

Proposition 20. Suppose K is a commutative ring. Let M be a K-module and p and q positive integers.
Consider the module M ⊗ · · · ⊗M ⊗M∗ ⊗ · · · ⊗M∗, with p occurrences of M and q occurrences of M∗.
There exists a unique morphism

j : M ⊗ · · · ⊗M ⊗M∗ ⊗ · · · ⊗M∗ → T pq (M)

that sends the element x1 ⊗ · · · ⊗ xp ⊗ u1 ⊗ · · · ⊗ uq of M ⊗ · · · ⊗M ⊗M∗ ⊗ · · · ⊗M∗
to the element x1 ⊗ · · · ⊗ xp ⊗ u1 ⊗ · · · ⊗ uq of T pq (M) (following Remark 5, we recall that this latter
expression is the multi-linear form on (M∗)p × Mq whose value at (v1, . . . , vp, y1, . . . , yq) is the scalar
v1(x1) . . . vp(xp)u1(y1) . . . uq(yq)).

Proof. Since the map Mp × (M∗)q that sends the element (x1, . . . , xp, u1, . . . , uq) of Mp × (M∗)q to the
element x1 ⊗ · · · ⊗ xp ⊗ u1 ⊗ · · · ⊗ uq of T pq (M) is multi-linear, the proposition is an immediate corollary of
the universal property of the tensor product of modules (see Proposition 14). In other words, the morphism
j is completely defined by its values on the pure tensors of M ⊗ · · · ⊗M ⊗M∗ ⊗ · · · ⊗M∗.

Remark 10. If M = Z/pZ, and K is Z (so that M is not a free K-module), then T 2
0 (M) = {0} is not

isomorph to M ⊗M . As such, in this case the morphism j introduced above is not an isomorphism. Indeed,
consider the mapping from M ×M to M associating to (x, y) the product xy (that is the multiplication of
integers modulo p). This is a bilinear non trivial map, and by the universal property of M ⊗M , it can be
factorized through a linear map on M ⊗M , which shows that M ⊗M is not reduced to its zero element.
For the case of T 2(M) we have that any element can be uniquely identified by its image of basis element,
but M∗ = {0}, and so T 2(M) = 0.
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Remark 11. We have just shown that while the notions of tensors defined as multi-linear forms and tensors
defined as elements of the tensor product ofK-modules do coincide when theK-modules are finitely generated
free modules, they are not necessarily identical. We have also seen that the tensor product of two non-trivial
K-modules can be trivial.

2.4.2 On tensor product of linear maps

The results exhibited here above hold not only for the case of tensor products of linear forms, but also for
tensor products of linear map with values in K-modules.

Proposition 21. Let L,L′,M and M ′ be four K-modules. Let

u : L→ L′

and
v : M →M ′

be two linear maps. Then there exists a unique linear map f from L⊗M to L′ ⊗M ′ such that f(x⊗ y) =
u(x)⊗ v(y), for all x in L and y in M .

Proof. Let φ : L ×M → L′ ⊗M ′ be the map that sends (x, y) to u(x) ⊗ v(y). We verify that φ is indeed
bilinear:

φ(λx+ λ′x′, y) = (λx+ λ′x′)⊗ y
=λ(x⊗ y) + λ′(x′ ⊗ y) = λφ(x, y) + λ′φ(x′, y)

by bi-linearity of the tensor product, and similarly on the right side. As φ is bilinear there is a unique linear
map φ̄ : L⊗M → L′ ⊗M ′ such that φ̄(x⊗ y) = φ(x, y). We chose f = φ̄.

This unique linear map will now be formally defined.

Definition 33. Let L,L′,M,M ′ be K-modules and u : L → L′ and v : M → M ′ be linear maps. The
tensor product of linear maps u and v is the unique linear map, noted u⊗̃v that associates to each l⊗m
in L⊗M the element u(l)⊗ v(m) in L′ ⊗M ′.

Notation The notation u⊗̃v for the tensor product of linear maps u and v is to distinguish u⊗̃v from the
element u⊗ v of L(L,L′)⊗ L(M,M ′). However, let us remark that the mapping

L(L;L′)× L(M ;M ′)→ L(L⊗M ;L′ ⊗M ′)
(u, v) 7→ u⊗̃v

is bilinear, as this is easily deduced from the fact that, for each pure tensors x⊗ y ∈ L⊗M ,

[(λu+ µu′)⊗̃v](x⊗ y) = (λu+ µu′)(x)⊗ v(y)

= (λu(x) + µu′(x))⊗ v(y) = λu(x)⊗ v(y) + µu′(x)⊗ v(y)

= [λu⊗̃v](x⊗ y) + [µu′⊗̃v](x⊗ y),

and similarly on the right hand side. The universal property of Theorem 5 implies that it can be uniquely
factored via a linear map

L(L;L′)⊗ L(M ;M ′)→ L(L⊗M ;L′ ⊗M ′)
u⊗ v 7→ u⊗̃v

.

This morphism is called the Kronecker morphism. In this general case, this morphism is neither injective
nor surjective, although it can be shown to be injective in the case of finite dimensional vector spaces.
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Proposition 22. Let L,L′, L′′,M,M ′ and M ′′ be modules. Let

u′ : L→ L′ u′′ : L′ → L′′

v′ : M →M ′ v′′ : M ′ →M ′′

be linear maps. Then
(u′′ ◦ u′)⊗̃(v′′ ◦ v′) = (u′′⊗̃v′′) ◦ (u′⊗̃v′).

Proof. Let x be an element of L and y be an element of M . We have that

[(u′′ ◦ u′)⊗̃(v′′ ◦ v′)](x⊗ y) = (u′′ ◦ u′)(x)⊗ (v′′ ◦ v′)(y)

= u′′(u′(x))⊗ v′′(v′(y)) = u′′⊗̃v′′(u′(x)⊗ v′(y))

= (u′′⊗̃v′′) ◦ (u′⊗̃v′)(x⊗ y),

for all x in L and y in M , hence the result.

We now have different types of tensor products. First, there is the tensor product of linear or multi-linear
forms (tensors as commonly used in physics being a particular case of this), as described in [3]. Second, we
have the tensor product of K-modules, and the definition of pure tensors as elements of this tensor product
of K-modules. Finally, we have just seen the tensor product of linear maps, which we noted ⊗̃, so as to
distinguish u⊗ v from its image by the Kronecker morphism u⊗̃v.

2.4.3 The special case of tensor product of finitely generated free modules

In this section K is a commutative ring and L and M are K-modules.

A base for the tensor product of modules

We will begin with a technical result which will enable us to determine a base for the tensor product of two
finitely generated free modules.

Proposition 23. for any families of K-modules (Li)i and (Mj)j,

(
⊕
i

Li)⊗ (
⊕
j

Mj) '
⊕
i,j

(Li ⊗Mj).

Proof. Consider the function

Π : (
∏
i

Li)× (
∏
j

Mj)→
∏
i,j

(Li ⊗Mj)

((li)i), (mj)j) 7→ (li ⊗mj)i,j .

It is bilinear as

Π(λ(li)i + µ(l′i)i, (mj)j) = ((λli + µl′i)⊗mj)i,j

= (λli ⊗mj + µl′i ⊗mj)i,j = λ(li ⊗mj)i,j + µ(l′i ⊗mj)i,j

= λΠ((li)i, (mj)j) + µΠ((l′i)i, (mj)j) ,

and similarly on the right hand side. By the universal property of the tensor product of K-modules, there
exists therefore a unique linear map, determined by the values on the pure tensors
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Π : (
∏
i

Li)⊗ (
∏
j

Mj)→
∏
i,j

(Li ⊗Mj)

(li)i ⊗ (mj)j 7→ (li ⊗mj)i,j .

When we compose this linear map with the canonical injection

i : (
⊕
i

Li)⊗ (
⊕
j

Mj)→ (
∏
i

Li)⊗ (
∏
j

Mj)

we find that the mapping

Φ : (
⊕
i

Li)⊗ (
⊕
j

Mj)→
⊕
i,j

(Li ⊗Mj)

(li)i ⊗ (mj)j 7→ (li ⊗mj)i,j

is linear, as it is a composition of two linear maps, and well defined, as the image of any family with a finite
number of non nul elements will be a family with a finite number of non nul elements.

For each pair of indices i, j we define

φi,j : Li ×Mj → (
⊕
i

Li)⊗ (
⊕
j

Mj)

(li,mj) 7→ (li)⊗ (mj).

These functions are bilinear, as can be simply verified, so there exists for each i, j a unique linear map

φi,j : Li ⊗Mj → (
⊕
i

Li)⊗ (
⊕
j

Mj)

(li ⊗mj) 7→ (li)⊗ (mj).

These linear maps can be combined to create a linear map

Ψ :
⊕
i,j

(Li ⊗Mj)→ (
⊕
i

Li)⊗ (
⊕
j

Mj)

(li ⊗mj)i,j 7→ (li)i ⊗ (mj)j

which is the inverse of Φ, hence the isomorphism.

Proposition 24. Let L and M be finitely generated free modules. Let (ai)1≤i≤p be a basis of L and (bj)1≤j≤q
be a basis of M . The products

(ai ⊗ bj)1≤i≤p,1≤j≤q
form a basis of L⊗M .
The rank of L⊗M is the product of the rank of L and the rank of M . In particular, if K is a commutative
field, then

dim(L⊗M) = dim(L)dim(M).

Proof. By Proposition 23 we have

L⊗M = (
⊕
i

Kai)i ⊗ (
⊕
j

Kbj)j '
⊕
i,j

K(ai ⊗ bj).
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Isomorphism between M ⊗ · · · ⊗M ⊗M∗ ⊗ · · · ⊗M∗ and T pq (M)

We come back to the mapping j from M ⊗ · · · ⊗M ⊗M∗ ⊗ · · · ⊗M∗ to T pq (M) of Proposition 20.

Proposition 25. Suppose M be a free K-module of finite type, p and q positive integers and consider the
module M ⊗ · · · ⊗M ⊗M∗ ⊗ · · · ⊗M∗, with p occurrences of M and q occurrences of M∗.
The map

j : M ⊗ · · · ⊗M ⊗M∗ ⊗ · · · ⊗M∗ → T pq (M)

that sends the element x1 ⊗ · · · ⊗ xp ⊗ u1 ⊗ · · · ⊗ uq of M ⊗ · · · ⊗M ⊗M∗ ⊗ · · · ⊗M∗
to the element x1 ⊗ · · · ⊗ xp ⊗ u1 ⊗ · · · ⊗ uq of T pq (M) is an isomorphism.

Proof. Suppose that M is finitely generated, with basis (ai)1≤i≤n. Then we have that the elements

(ai1 ⊗ · · · ⊗ aip ⊗ aj1 ⊗ · · · ⊗ ajq )1≤i1,...,ip,j1...,jp≤n

form a basis of M ⊗ · · · ⊗ M ⊗ M∗ ⊗ · · · ⊗ M∗, and their images by j form a basis of T pq (M): j is an
isomorphism.

Tensor product of linear maps and Kronecker product of matrices

Let L, L′, M and M ′ be free K-modules of finite type. Let

u : L→ L′ and v : M →M ′

be linear maps. We are going to show how to write the matrix of u⊗̃v as a function of the matrices of u and
v.

Let us consider A = (ai)1≤i≤p, B = (bj)1≤j≤q, C = (ck)1≤k≤r and D = (dl)1≤l≤s bases of L, L′, M and
M ′ respectively. Let A = (αij)(i,j)∈{1,...,p}×{1,...,q} and B = (βkl)(k,l)∈{1,...,r}×{1,...,s} be the matrices of u
and v in these bases:

A =MA,B(u) =

α11 . . . α1p

...
. . .

...
αq1 . . . αqp

 ,

B =MC,D(v) =

β11 . . . β1r
...

. . .
...

βs1 . . . βsr

 .

For the sake of convenience, we identify in the following elements of the module L, L′, M and M ′ with their
column matrices of coordinates in the chosen bases. If x and y are elements of L and M , then (u⊗̃v)(x, y)
will be the element x′ ⊗ y′ with

x′ =

x
′
1 =

∑
i α1ixi

...
x′q =

∑
i αqixi


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and

y′ =

y
′
1 =

∑
i β1iyi

...
y′s =

∑
i βsiyi

 .

In order to write the tensor products x⊗ y and x′⊗ y as column matrices, we will need to chose a way of
ordering the elements of the bases (ai ⊗ ck)1≤i≤p,1≤k≤r or L⊗M and (bj ⊗ dl)1≤j≤q,1≤l≤s of L′ ⊗M ′. We
will chose to increase the indices of the ck before the ai and the dl before the bj .

Then, we can write the tensor product of vectors in the form

x⊗ y =



x1y1
...

x1yr
x2y1

...
x2yr

...
xpy1

...
xpyr



and x′ ⊗ y′ =



x′1y
′
1

...
x′1y
′
r

x′2y
′
1

...
x′2y
′
s

...
x′qy
′
1

...
x′qy
′
s



.

We note that this convention of having the yk change before the xi and the y′l change before the x′j
is completely arbitrary. It is possible to use a different symbolic formalism, for instance alternating the xi
before the yi, and arrive at the result so long the same formalism is used during the entirety of the calculation.

When the bases are ordered according to the previous convention, the matrix of u⊗̃v is equal to

α11β11 . . . α11β1r α12β11 . . . α12β1r . . . α1pβ11 . . . α1pβ1r
α11β21 . . . α11β2r α12β21 . . . α21βr2 . . . αp1β21 . . . αp1β2r

...
...

α11βs1 . . . α11βsr α12βs1 . . . α12βsr . . . α1pβs1 . . . α1pβsr
α21β11 . . . α21β1r α22β11 . . . α22β1r . . . α2pβ11 . . . α2pβ1r

...
...

α21βs1 . . . α21βsr α22βs1 . . . α22βsr . . . α2pβs1 . . . α2pβsr
...

...
...

...
αq1β11 . . . αq1β1r αq2β11 . . . αq2βr1 . . . αqpβ11 . . . αqpβ1r

...
...

αq1βs1 . . . αq1βsr αq2βs1 . . . αq2βsr . . . αqpβs1 . . . αqpβsr



.

We can see that this matrix is obtained from the matrix A of u replacing each coordinate αij by the
matrix block αijB.

This is sometimes called the Kronecker Product of two matrices and noted A⊗B.
.

Remark 12. Were we to adopt the convention of having the xi change before the the yk and the x′j change
before the y′l, the matrix of A⊗B would be the matrix composed of the blocks bijA, rather than the blocks
aijB as is with the current convention.
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Chapter 3

Hypermatrices and tensors

In this section, F will denote a commutative field.
Hypermatrices are generalizations of matrices to families of scalars with more than two indexes. We will

also see that they can be seen as representing the coefficients in a given basis, or set of bases, of a tensor.

Notation We will sometimes use the notation 〈n〉 to denote the set {1, . . . , n}.

3.1 Basic definitions

Definition 34. A function f : 〈n1〉 × · · · × 〈nd〉 → F will be referred to as a hypermatrix of order d.

Notation The set of hypermatrices on n1, . . . nd with coefficients in the field F will be denoted Fn1×···×nd .
A hypermatrix can also be represented in the form A = [ai1...id ] with ik ∈ 〈nk〉 for k ∈ 〈d〉. A hypermatrix

of order 2 is a standard matrix, and as such the set of m × n matrices over F can be referred to as either
Mm×n(F ) or Fm×n.

Much as with matrices, we define termwise addition in the following manner: ifA = [ai1...id ]i1∈〈n1〉,...,id∈〈nd〉
and B = [bi1...id ]i1∈〈n1〉,...,id〈nd〉 are two hypermatrices, of Fn1×···×nd , then

A+B = [ai1...id + bi1...id ]i1∈〈n1〉,...,id∈〈nd〉

will be their sum. For scalar multiplication, if λ is a scalar of F , and A = [ai1...id ]i1∈〈n1〉,...,id∈〈nd〉 is a
hypermatrix, then

λA = [λai1...id ]i1∈〈n1〉,...,id∈〈nd〉

will be the their product.
We define the standard basis of Fn1×···×nd to be E = {Ei1...id : i1 ∈ 〈n1〉, . . . , id ∈ 〈nd〉} where Ei1...id

denotes the hypermatrix with a (i1, . . . , id) coordinate of 1 and zeros everywhere else.
The standard matrix multiplication can be generalized to hypermatrices.

Definition 35. Let X1 = (x1ij) ∈ Fm1×n1 , . . . , Xd = (xdij) ∈ Fmd×nd are matrices and A = [ai1...id ] ∈
Fn1×···×nd is a hyper matrix, their mutli-linear matrix product is

A′ = (X1, . . . , Xd) ·A = [a′i1...id ] ∈ Fm1×···×md

defined by

a′i1...id =
∑

k1,...,kd

x1i1k1 . . . x
d
idkd

ak1...kd .

We have the following properties:
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Proposition 26. If A ∈ Fn1×···×nd is a hypermatrix, and for i ∈ 〈d〉 let Xi ∈ F li×mi and Yi ∈ Fmi×ni are
matrices, then

(X1, . . . , Xd) · ((Y1, . . . , Yd) ·A) = (X1Y1, . . . , XdYd) ·A.

Proof. By calculating we have

(X1, . . . , Xd) · ((Y1, . . . , Yd) ·A)

= (X1, . . . , Xd) ·

n1,...,nd∑
k1,...,kd

y1j1k1 . . . y
d
jdkd
· ak1...kd


j1∈〈m1〉,...,jd∈〈md〉

=

n1,...nd∑
j1,...,jd

x1i1j1 . . . x
d
idjd

n1,...,nd∑
k1,...,kd

y1j1k1 . . . y
d
jdkd
· ak1...kd


i1∈〈l1〉,...,id∈〈ld〉

=

 ∑
j1,...,jd

∑
k1,...,kd

x1i1j1y
1
j1k1 . . . x

d
idjd

ydjdkdak1...kd


i1∈〈l1〉,...,id∈〈ld〉

=

 ∑
k1,...,kd

(
∑
j1

x1i1j1y
1
j1k1) . . . (

∑
jd

xdidjdy
d
jdkd

)ak1...kd


i1∈〈l1〉,...,id∈〈ld〉

= (X1Y1, . . . , XdYd) ·A.

Proposition 27. If A and B are hypermatrices in Fn1×···×nd , α and β are scalars and for k ∈ 〈d〉 Xk ∈
Fmk×nk are matrices, then

(X1, . . . , Xd) · (αA+ βB) = α((X1, . . . , Xd) ·A) + β((X1, . . . , Xd) ·B).

Proof. Once again by calculating we find

(X1, . . . , Xd) · [αai1...id + βbi1...id ]i1∈〈n1〉,...,id∈〈nd〉 = ∑
k1,...,kd

x1i1k1 . . . x
d
idkd

(αai1...id + βbi1...id


i1∈〈n1〉,...,id∈〈nd〉

= α

 ∑
k1,...,kd

x1i1k1 . . . x
d
idkd

ak1...kd


i1∈〈n1〉,...,id∈〈nd〉

+ β

 ∑
k1,...,kd

x1i1k1 . . . x
d
idkd

bk1...kd


i1∈〈n1〉,...,id∈〈nd〉

= α(X1, . . . , Xd) ·A+ β(X1, . . . , Xd) ·B.

Definition 36. If π ∈ Sd is a permutation, and A = [ai1...id ]i1∈〈n1〉,...,id∈〈nd〉 is a hypermatrix of order d,
then we define the π-transpose of A to be

Aπ = [aπ(i1)...π(id)]i1∈〈n1〉,...,id∈〈nd〉.

The space of Fn1×np of order d hypermatrices on a field F is a vector space for these operations. Indeed,
it is an abelian group with a scalar multiplication that is distributive with regards to the addition operation.
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Hypermatrices and tensors Let V1, . . . , Vd are finitely generated free vector spaces of dimension n1, . . . , nd
over the field F = R or F = C, with respective bases B1, . . . ,Bd, where each Bi = {bi1, . . . , bini

}. If the tensor
T ∈ V1 ⊗ · · · ⊗ Vd has the structure constants or coordinates in the basis (b1i1 ⊗ · · · ⊗ b

d
id

)i1∈〈n1〉,...,id∈〉nd〉 of
(ai1...id)i1,...,id then we can represent it in the basis as the hypermatrix

A = [ai1...id ] ∈ Fn1×···×nd .

Furthermore, if B′1, . . . ,B′d is a second set of bases for V1, . . . , Vd, and X1, . . . , Xd are the respective
change of basis matrices from B1, . . . ,Bd to B′1, . . . ,B′d, then hypermatrix of T in the new set of bases is

A′ = (X1, . . . , Xd) ·A.

Definition 37. Let F be a field and let u1 ∈ Fn1 , u2 ∈ Fn2 , . . . , ud ∈ Fnd be vectors. Their Segre outer
product, noted ⊗b⊗ c is defined as

[u1i1u
2
i2 . . . u

d
id

]n1n2...nd
i1=1i2=1...id=1.

The Segre outer product can help us to define an isomorphism between Fn1 ⊗ · · · ⊗ Fnd and Fn1×···×nd

when F is R or C (and possibly some other fields, but it is best to avoid overgeneralizing and thereby
including pathological cases). Indeed, consider the Segre map

φ : Fn1 × · · · × Fnd → Fn1×···×nd

(u1, . . . , ud) 7→ u1 ⊗ · · · ⊗ ud.

It is bilinear, and as such by the universal property of the tensor product of F -modules there is a unique
θ : Fn1 ⊗ · · · ⊗ Fnd such that θ(u1 ⊗ · · · ⊗ ud) = u1 ⊗ · · · ⊗ ud. This mapping is evidently injective, and
since Fn1×···×nd and Fn1 ⊗ · · · ⊗Fnd have the same dimension, it is an isomorphism. As such, we have just
proved the following result

Proposition 28. Let F be a the field R or C and n1, . . . , nd be positive integers. The vector spaces Fn1×···×nd

and Fn1 ⊗ · · · ⊗ Fnd are isomorphic.

Definition 38. Let A = [ai1...ip ] ∈ Fn1×···×np and B = [bj1...jq ] ∈ Fm1×···×mq be hypermatrices. Their
outer product of hypermatrices noted A⊗B is the hypermatrix

A⊗B = [ai1...ipbj1...jq ] ∈ Fn1×···×np×m1×···×mq .

3.1.1 Some useful concepts

The terminology mode, when used to refer to a hypermatrix, will designate one of its dimensions. For
example, if A ∈ F 2×3×4 is a hypermatrix, its first mode, or mode 1 will be two, second mode 3, and third
mode 4.

Definition 39. Let A = [ai1...id ]i1∈〈n1〉,...,id∈〈nd〉 be a hypermatrix. The mode q fibers of A are the vectors
formed by fixing all the indices but the q mode index.

The mode q fibers are noted ai1...iq−1:iq+1...id .
To illustrate this, if A is as before an element of Fn1×···×nd , then the mode q fibers of A will be vectors

of the form

ai1...iq−1:iq+1...id =

 ai1...iq−11iq+1...id
...

ai1...iq−1nqiq+1...id


Fibers are the hypermatrix analogue of rows and columns of a matrix. In fact, the rows of a matrix are

its mode 1 fiber, and its columns are its mode 2 fibers.
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Definition 40. Given a hypermatrix of order d X ∈ Fn1×···×nd , the mode k flattening of X is the matrix
noted X(k) whose columns are the mode i fibers of X , arranged in reverse lexicographical order.

Reverse lexicographical order simply means that the leftmost index will vary first, then the second
leftmost, and so on, with the rightmost index will vary last. It is the lexicographical order applied to the
reverse of each string of indices. For example, given a hypermatrix of order 4 where n1 = n2 = n3 = n4 = 2,
if we chose to take its mode 2 representation, we will have a 2× 8 matrix with columns

X(2) =
[
x1:11 x2:11 x1:21 x2:21 x1:12 x2:12 x1:22 x2:22

]
.

More generally, the mode k flattening is described by mapping each xi1...ik...id in the hypermatrix to xikj
in the mode k flattening, where

j = 1 +

d∑
l=1,l 6=k

(il − 1)(

l−1∏
m=1,m 6=k

nm).

3.1.2 Alternative matrix products

In addition to the Kronecker product, there are other possible matrix products. We will describe two of
them, the Khatri-Rao product and the Hadamard product, although other types, such as the Semi-Tensor
product and the Tracy-Singh product, also exist. Furthermore, we note that the formalism we have used to
describe the Khatri-Rao product is not unique, and that other ways of defining this product exist.

Definition 41. Let A ∈ F l×n and B ∈ Fm×n be two matrices with the same number of columns. The
Khatri-Rao product of A and B, noted A � B, is the lm × n matrix whoses columns are the Kronecker
products of the corresponding columns of A and B.

To illustrate this, suppose

A =

a11 . . . a1n
...

. . .
...

al1 . . . aln


and

B =

 b11 . . . b1n
...

. . .
...

bm1 . . . bmn

 .
Then A�B will take the form

A�B =



a11b11 . . . a1nb1n
...

. . .
...

a11bm1 . . . a1nbmn
...

. . .
...

...
. . .

...
al1b11 . . . alnb1n

...
. . .

...
al1bm1 . . . alnbmn


using the previous formalism of varying the indices of the second matrix before those of the first.
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Definition 42. Let A ∈ Fm×n and B ∈ Fm×n be two matrices with the same dimensions. Their Hadamard
product, noted A ∗ B is the m× n matrix whose elements are the products of the corresponding elements
of A and B.

To illustrate this, suppose

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn


and

B =

 b11 . . . b1n
...

. . .
...

bm1 . . . bmn

 .
The Hadamard product will be

A ∗B =

 a11b11 . . . a1nb1n
...

. . .
...

am1bm1 . . . amnbmn

 .
3.2 Graphs, hypergraphs, and networks

This section will introduce the basic terminology used to describe graphs, networks and hypergraphs.

Definition 43. A graph G = (VG, EG) is a set of nodes (or vertices) VG and a set of edges between those
nodes EG ⊆ VG × VG.

Graphs are also sometimes referred to as networks and we will use both terminologies. For the sake of
simplicity, we will assume that for a finite graph, the nodes are labeled 1, . . . , n where n is the number of
nodes. We will also consider exclusively finite graphs.

A graph is called simple if it has no loops and at most one edge between each pair of nodes. A
multigraph is a graph with multiple edges between nodes.

The concept of a graph can be generalized to a hypergraph, by weakening the condition that edges must
be pairs.

Definition 44. A hypergraph H = (VH , EH) is a collection of vertices or nodes along with a set of
hyperedges EH ⊆ P(VH) linking those nodes.

In both hypergraphs and graphs, edges can be undirected or directed, and weighted or unweighted.

Definition 45. A directed graph or digraph is one where the edges (a, b) and (b, a) are distinct. In other
words, edges in a directed graph have a direction from one node to another.

3.2.1 Multiplex networks

Graphs and networks are frequently used to represent data and their interactions. Beyond the visualization
of the interaction network (often impossible due to the size of the network), this representation is useful for
data analysis and to infer, from a topological analysis of the graph, underlying properties in the data set. In
molecular biology, new technologies provide a huge quantity of heterogeneous data, that can be interpreted
as interactions of the biological components at different scales: protein-protein interactions, gene regulation
through transcription factors, gene regulation through non-codant RNA, signalling pathways, correlation of
expression levels... [8]. While it is important to consider these data as a whole, there is also evidence that it
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Figure 3.1: A multiplex network

is better to study each of these networks separately, rather than lumping them together into a single network
[2]. Multiplex networks are composed of several layers of simple (monoplex) networks. Each layer shares
the same set of nodes, but their edges belong to different categories (they have a different meaning). Hence,
multiplex allow to encode all the different type of interactions between the components, while keeping them
separate. An illustration of this is given Figure 3.1.

We need efficient methods to mine and analyse multiplex networks despite their huge size. For example,
in [11] is proposed a random walk with restart method to predict key components around a gene of interest.
Tensors can be used to encode multiplexes (cf the following subsections), and then could shed new light on
the data and their structure.

3.2.2 Some uses of hypermatrices

Hypermatrices can be used to encode hypergraphs and multiplexes. For hypergraphs, if the hypergraph
contains n nodes, it can be coded as an order n hypercubical hypermatrix will all indices in 〈n + 1〉. To
the hypergraph H = (V,E) we can associate the hypermatrix AH = [ai1...in ∈ Rn+1×···×n+1 such that each
ai1...in is the weight of the hyperedge between nodes i1, . . . , in. Of course, this will only work for hyperedges
of size n, which is why we add a ”0” node to the node set. A hyperedge linking nodes i, j and k will be
encoded by the index a0...ijk...0. However, this poses problems of redundancy - the same hyperedge of size r
will be in

(
n+1
r

)
different places in the hypermatrix!

Coding multiplexes is a somewhat simpler task. Any multiplex M = (V,E1, . . . , Ep) can be encoded in
an order 3 hypergraph

AM = [aijk] ∈ Rn×n×p

where n is the size of V . Each aijk is the value of the edge (i, j) in the layer k.

3.3 Tensor rank decomposition

Definition 46. The rank of a tensor T ∈ Fn1 ⊗ · · · ⊗ Fnd is the number of simple or pure tensors needed
to write the tensor as a linear combination of simple tensors. In other words, it is the smallest r such that

there exists (a
(1)
i ⊗ · · · ⊗ a

(d)
i )i∈〈r〉 ∈ Fn1 ⊗ · · · ⊗ Fnd and (λi)i∈〈r〉 such that

T =

r∑
i

λia
(1)
i ⊗ · · · ⊗ a

(k)
i .
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Notation The following terms will be used interchangeably - simple tensor, pure tensor, and rank-1 tensor.
The tensor rank decomposition of a hypermatrix, also sometimes called CANDECOMP, PARAFAC,

or CP-decomposition, is the process of taking a hypermatrix representation of a given tensor and finding the
hypermatrix representations and associated scalars of the simple tensors that compose it.

A proof of the following can be found in [5].

Proposition 29. Computing the rank of a tensor over any field that contains Q is NP-hard.

In practice, most tensor rank decompositions are done as approximations up to a pre-specified rank.
The decompositions are not nested - the best rank r − 1 approximation may not be part of the best rank r
approximation. Approximate tensor rank decompositions can be done using the tool Tensorly [7]. We will
also give a description of an algorithm, called the alternating least squares algorithm, which can be used to
calculate approximate tensor rank decompositions, which can be found, along with an in depth discussion
of other methods, in [6].

This algorithm will use the Moore-Penrose generalized matrix inverse, a brief discussion of which can be
found in the annex.

We will also quickly define a tensor norm, which is simply a generalization of the standard euclidian norm
on Rn.

Definition 47. The tensor norm of a tensor X = [xi1...id ∈ Rn1×···×nd is

||X =

√ ∑
i1,...,id

x2i1...id ||.

Given an order d hypermatrix X ∈ Rn1×···×nd and a pre-specified rank R, our goal will be to find scalars

λ1, . . . , λR and vectors a
(1)
1 , . . . a

(1)
R ∈ Rn1 , a

(2)
1 , . . . a

(2)
R ∈ Rn2 . . . , a

(d)
1 , . . . a

(d)
R ∈ Rnd so as to minimize||X −∑

R λra
(1)
r ⊗ · · · ⊗ a(d)r ||.

We will organise the vectors a
(i)
1 , . . . , a

(i)
R into the columns of a matrix A(i) =

[
a
(i)
1 a

(i)
2 . . . a

(i)
R

]
. We

will next state the following lemma, which can be proved by a simple calculation.

Lemma 5.1. If X ∈ Rn1×···×nd is a hypermatrix with mode i flattening X(i) and with tensor rank decom-
position

X =

R∑
r=1

λra
(1)
r ⊗ · · · ⊗ a(d)r

then
X(i) = A(i)Λ(A(d) � · · · �A(i+1) �A(i−1) � · · · �A(1))T

where Λ is the diagonal matrix with λ1, . . . , λR as its diagonal.

The algorithm starts initializing each of the A(i) matrices. The simplest way to do this is randomly,
although other ways are possible, such as for example taking the R left singular vectors of the SVD of X(i).
Once all matrices are initialized, we fix all but the first one, and solve for that algebraically, and normalize
it by storing the norms of each column as λr. In short, we preform the following operations

X(i) = A(i)Λ(A(d) � · · · �A(i+1 �A(i−1) � · · · �A(1))T

∴X(i)((A(d) � · · · �A(i+1 �A(i−1) � · · · �A(1))T )+ = A(i)Λ

λr = ||λra(i)r ||

where as in the annex, A+ denotes the Moore-Penrose pseudo-inverse of A.
We then repeat the process for each one of the other matrices. We keep doing this loop until a stopping

criteria is met - either the norm of X −
∑
r λra

(1)
r ⊗ · · · ⊗ a(d)r stops decreasing, or a pre-specified maximal

number of iterations is reached.
In algorithmic form, this gives 1.
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Data: X , R,maxIter
Result: λ1, . . . , λR, A

(1), . . . , A(d)

initialize A(1), . . . , A(d) ;
iter = 0 ;

newFit = ||X −
∑
r λra

(1) ⊗ · · · ⊗ a(d)|| ;
oldFit = newFit + 1 ;
while oldFit ≥ newFit and iter < maxIter do

oldFit = newFit ;
for i ∈ 〈d〉 do

Â(i) = X(i)((A(d) � · · · �A(i+1) �A(i−1) � · · · �A(1))T )+ ;

newFit = ||X −
∑
r λra

(1) ⊗ · · · ⊗ a(d)|| ;
iter = iter + 1 ;

Complexity A tensor rank approximation of rank R of a hypermatrix Fn1×···×nd will require NRd space,
where N =

∏
i ni. For time complexity, in [4] there is an algorithm that calculates the SVD of an m × n

matrix in O(max(m2n, n3)) time. A matrix multiplication of an l×m matrix with an m×n matrix requires
O(lmn) operations. A Khatri-Rao product of an l × n matrix with an m × n matrix also requires O(lmn)
operations. Each iteration of the for loop involves calculation d − 2 Khatri-Rao products, which requires
O(N/ni) operations in total, followed by a calculation of the Moore-Penrose inverse (which is more or less
the same as a calculation the SVD of an N/ni × R matrix, which will be be O((N/ni)

3) if N/ni > R, and
O(R2N) if not, and finally there is a multiplication of the mode i flattening of the hypermatrix, of dimension
ni ×N/ni, with the N/ni × R matrix, which takes O(NR) time. This means that depending on R,ni and
N , one iteration of the for loop takes O((N/ni)

3) time or O(NR2) time. We then have at least d iterations
of the for loop, and an indefinite number of while loop iterations. As such, we can say that if N ≥ R, the
whole process is cubic in N .

Applications In practice, this can be used to break up a multiplex network into a sum of smaller compo-
nent networks, which can be more easily studied.

3.4 Conclusion

The tensor product, an abstract algebraic object that enables bilinear forms to be identified with linear
forms, can be used to study real world biological systems. Any element of a tensor product of two modules
can be represented by a hypermatrix in a given base, and hypermatrices can be decomposed by a higher-order
generalization of the singular value decomposition. This decomposition, know by various names, which we
have called here Tensor Rank decomposition, enables us to find the parts of a multiplex network with the
most information. It should be noted, however, that many biological systems exhibit non-linear properties,
and as such a study of a multiplex networks that focuses only on the parts with the highest coefficients may
miss these crucial bits of information. Nevertheless, the tensor rank decomposition can be a useful tool for
the study of biological systems.
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