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Introduction

This memoir first develops the mathematical framework of tensors, including several original responses to
problems posed in [3], and then uses this framework to attempt to study the types of large networks that
are commonly found in biological data.



Chapter 1

Basic algebra

In this chapter will introduce a few of the key concepts which we’ll use to define tensors.

1.1 Modules

1.1.1 Generalities

In this section we will define modules and describe some of their properties. Intuitively, a module is like a
vector space, but the scalars are from a ring that isn’t necessarily a field. We will now proceed to formally
define a module, starting with the definition of some more basic algebraic structures.

Definition 1. A group is a set of elements G and an internal composition law between those elements .’
such that

1. the law . is associative: for any three elements x,y, z in G, we have (z.y).z = z.(y.2);
2. the law . admits a neutral element: there is a element e in G such that for all z in G, e.x = z.e = x;

3. each x in G is invertible: for every element z in G there is a element x~! in G, called the inverse of z,

such that z.z™ ' =z Lz =e.

A group is called commutative or abelian if .y = y.x for all z and y in G. Please note that the
internal composition law is not always noted by ’.” - other symbols are often used. In particular, the internal
composition law of an abelian group is sometimes noted '+’; in this case the neutral element is noted 0, and
the inverse of = becomes its opposite —zx.

Definition 2. Let N be a set of n elements. Then the group of bijective functions from N to N with
the composition of functions as internal composition law, will be called the permutation group or the
symmetric group of n elements, and noted &,,.

We consider that there is only one symmetric group on n elements as we can create a bijection between
any set of n elements. As such, we usually consider that N = {1,... n}.

Definition 3. A ring (A, +, X) is an abelian group that has a second internal composition law, generally
called multiplication and frequently noted ’'x’; associative and also distributive over the first one, which
means that for all a,b and ¢ in A we have that

ax(b+c)=(axb)+(axc),

(b+c)xa=(bxa)+(cxa).



If the ring has a neutral element for its second law, this element is generally noted 1 and the ring is said
to be unitary. We will almost exclusively consider unitary rings in the rest of this text, and a ring should
be assumed to be unitary unless it is explicitly said otherwise.

A ring with a commutative multiplication group is called a commutative ring.

Definition 4. An element a of a ring A is called invertible if it has a multiplicative inverse, in other words,
if there isan a= ! in A such that a x a ! =a" ! x a = 1.

Definition 5. A field is a unitary ring with 1 # 0 such that all non zero elements are invertible.

Now we can define modules. Once again, the general intuition of ”a module is a vector space with the
scalars coming from a ring that is not necessarily a field” may be useful to keep in mind. The switch from
a field of scalars to a ring of scalars can lead to the loss of some of the nice properties of vector spaces.

In all of the following definitions, we will be using a unitary ring (A, +, x).

We can now define left and right modules.

Definition 6. A left A-module (M, +,.) is an abelian group on which is defined an operation Ax M — M
called scalar multiplication, that respects the following properties for all a,b in A and for all m,n in M :

e a(m+n)=am+an,
e (a+b)m=am+ bm,
e a(bm) = (ab)m,

o 1ym=m.

If we instead define scalar multiplication on the right, then we have a right A-module. If (A4, x) is
commutative, both are the same. We will exclusively consider left modules in the rest of this text.

From this point on in the text, we may occasionally refer to an A-module as simply a module, and omit
the reference to the scalar ring.

Definition 7. If M is an A-module and N is a subset of M, we call N a submodule of M if it is a subset
of M that is an A-module for the addition and scalar multiplication induced by the ones of M.

If N is a submodule of M, then N is non empty, and we have that for all n,n’ in N, and for all scalars
ain A, an € N and and n+n’ € N. This is actually a characterisation of submodules: if we have a module
M and we want to verify that a subset N C M is a submodule, we simply verify that it is non empty and
closed under addition and scalar multiplication.

Proposition 1. If M is an A-module and N a submodule of M, the binary relation ~x on M defined by
x ~pn y if there exists an element n of N such that x +n =y is an equivalence relation. Let us define the
quotient of M by N, usually noted M/N, as the set of equivalence classes under this relation. Then the
operations of M induce operations on the quotient that give to M/N a structure of A-module. In particular,
elements of N are sent to zero by the projection from M to M/N.

Definition 8. A linear combination of mq,...,m,, where all the m; are elements of an A-module M is
simply an element of M that can be written as A\ymq + ...+ A\,m,, with A1, .., A\, being elements of the scalar
ring A.

Definition 9. Some elements m;, with i € I, of M are said to be linearly independent if the only possible
finite linear combination of these elements equal to zero is the one where all scalar coefficients are equal to
zero. In other words (or rather, symbols), for any finite subset {iy,...,4,} of I,

> Aiymi, =0 = Vke{l,...,r}, Xy, =0.
1<k<r



Definition 10. The direct product of a family of modules (M;);c; is the module with the underlying
set [, M; being the cartesian product of the underlying sets, the group law being determined termwise, ie
(my); + (n;); = (my + ny)s, and scalar multiplication being defined as a(m;); = (am;);.

Definition 11. The direct sum of a family (M;);c; of modules, noted @, M; is the submodule of their
direct product composed of elements who have only a finite number of components with non-zero values.

Definition 12. Let M an A-module and (m;);er a family of elements of M.

o If every element of M can be written as a finite linear combination of the m;, then we call {m; ; i € I'}
a generating set of M.

e If {m; ; i € I'} is generating and the m, are linearly independent, the family (m;);cs is called a basis
of M. Or to put it another way, (m;)icr is a basis if M = @, Am;, where A is the ring of scalars.

e If M admits a basis indexed on a finite set I, then M is said finitely generated, or of finite type.
Definition 13. A module over a field is called a vector space.

Definition 14. Let V be a vector space over a field K. If V is equipped with a binary operation x : V xV —
V such that for all vectors z,y, z and all scalars «,

(az + By) * z = a(z * z) + By * 2),
xx* (ay+ fz) = alz xy) + By * 2),
(az) « (By) = (af)(z *y),

then V becomes an algebra over the field K.

1.1.2 Free modules
In this section we define the free A-module over a set X, using a method detailed in [3].
We will let X be any non empty set, and A be a ring of scalars, and we will use the standard set-theoric

notation AX to denote the set of functions from X to A. Moreover, we will denote AX) the subset of AX
consisting of functions from X to A with only a finite number of non-zero values, ie

A =fue AX; #{z e X : ulz) #0} <oo}.
We will show briefly that AX is a module, then that ACX) is a submodule of AX, give a basis of AX)
and show that it has a universal property.

Proposition 2. The set AX is a module under the operations given for f,g € AX and A € A, by \f : x —
AM(x) and f+g:x— f(z)+ g(x).

Proof. Because any ring is a module over itself, we have that (AX,+) is an abelian group with neutral
element Oy x : 2 +— 04, and for all z in X,

Af +9)(@) = Af(x) + Ag(x),
A+ ) f(z) = Af(z) + pf(2),
Apf (@) = (M) f (),

1f(z) = f(=),

and hence the module axioms are verified. O

We now define for each z in X a corresponding function e, € AX) which sends z to 14 and every other
element of X to 04.



Proposition 3. AX) is a submodule of AX.

Proof. Tt suffices to verify that A®X) is non empty and closed under scalar multiplication and addition. The
family (e,)zex is in AX) as every element of that family has exactly one non-zero value. Furthermore, the
sum of two functions with a finite number of non-zero values will also have a finite number of non-zero values,
and multiplying by a scalar does not change the zeros of a function. Hence, A(X) is indeed a submodule of
AX. O

Proposition 4. The (e;)zex form a basis of AX).
Proof. We will first show that this family is linearly independent. Suppose that there exists a finite subset
Y of X and (\;)zey such that

Z A€y =0.

€Y

This means that for every y in X, >y Azex(y) = 0. But if we take y = x, then this must mean that A, is
nul for every z in Y, and therefore the family (e,).cx is indeed linearly independent.
To show that it is a generating family of A(X), take any w in the aforementioned set. It can be written as

u= Z u(z)ey ,

zeX

(recall that u(z) = 0 apart from a finite numbers of values of z), and so the (e;)zex do indeed form a basis
of AX), O

We now give a universal property of AX),

Proposition 5. If M is any A-module and f is any function from X to M, there exists a unique linear
map f from AX) to M such that for all x in X, f(es) = f(x).

Proof. As u(x) is a scalar of A for each z, we can simply define

fwy =Y ul@)es

zeX

for every u in A(X). We have existence by construction and uniqueness by linearity. This is illustrated in
the following commutative diagram.

AX)

Figure 1.1: Commutatif diagram

O

We can now define the free A-module on X to be AX). If we identify each z in X with the corresponding
ex in AX) | the free A-module on X can be thought of as the set of finite linear combinations of elements of
X, and in particular X as a subset of AX).

With this construction, if X and X’ are two finite sets with the same cardinal, then they give isomorphic
free modules.



Notation The free module over X will also sometimes be noted Fx.

Notice From now on, we will consider modules over a commutative unitary ring K.

1.2 Linear and multi-linear maps

1.2.1 Definitions and notations

Definition 15. A K-linear map, or more simply a linear map is a map [ from one K-module M to
another K-module N such that for all m,m’ in M and for all a in K we have {(m +m') = I(m) +1(m') and
l(am) = al(m).

Definition 16. A K-bilinear map, or more simply a bilinear map is a map ¢ from a cartesian product
of K-modules M x N into another K-module R such that for all (m,n), (m’,n') in M x N and for all a in
K, we have that ¢(am,n) = ap(m,n) = ¢(m,an), p(m +m’,n) = ¢(m,n) + ¢(m’,n) and ¢(m,n +n') =
¢(m,n) + ¢(m,n’).

We can generalize this to a cartesian product of n modules with multi-linear maps.

Definition 17. A multi-linear or n-linear map is a function with n variables that is linear in each one of
it’s variables. In other words, if X;,...X,, and Y are K-modules then f : X; x ... X,, — Y is n-linear, if
for all i in {1,...,n}, and for any set of vectors vy,...v;—1,Vit1,...,0, in X3 X ... X;1 X X;51 X - x X,
the function z; — f(v1,...,vi—1,%i, Vit1,...,Vy,) is linear.

This definition is a generalization of the two previous ones, linear maps are n-linear maps for n = 1, and
bilinear maps are n-linear maps for n = 2.
Like with linear maps and multi-linear maps, we can also define linear and multi-linear forms.

Definition 18. A linear map from an K-module M to its scalar ring K is called a linear form.

Definition 19. A multi-linear form or an n-linear form is a multi-linear or n-linear map from the
cartesian product of K-modules M7 X --- x M, to their scalar ring K.

Notation Let XY, X;,..., X, be modules over a commutative ring K. We will use the notation £(X;Y")
to designate the set of linear maps from X to Y, £(X) to designate the set of linear maps from X to X and
L(X1,...,Xn;Y) to designate the set of n-linear maps from X; x --- X X, to Y.

We note that all of the sets mentioned above are modules for the operations

frg=a f(2)+g(x)
M =z Af(x)
by virtue of X and Y being modules.
Proposition 6. If M, N and Z are K-modules, then L(M, N; Z) is isomorphic to L(M,L(N;Z)) .
Proof. Let us consider the map
T:L(M,N;Z) — L(M;L(N;Z)) ,
P — Uy

where ug : M — L(N;Z)  m v+ Ugpm , and ugm : N — Z is the map that takes n € N and sends it
to ¢(m,n): we have uy m(n) = ¢(m,n).

The map g, is linear because ¢ is bilinear, and the linearities of ug and 7 are immediate. Moreover, the
equalities ug ., (n) = ¢(m,n) imply that u, determines ¢, thus 7 is an isomorphism. O



1.2.2 A characterization of multi-linear forms on finitely generated free modules
One of the advantages of multi-linear forms on finitely generated free modules is that they are completely

and uniquely determined by what the basis elements map to.

Theorem 1. Let X;,..., X, (with r > 0) be finitely generated free modules over a commutative ring K,
with X1, ..., X, having for respective bases (a1,i)1<i<nis-- - (Gri)1<i<n,-

A function f: X1 x---x X, = K isr-linear if and only if there exists a family (¢iy .4, )1<i1<n,....1<in<nn
of elements of K such that, for any tuple of vectors (x1,...,x,) € X1 X -+ X X,., where each x) in X is

written as Y, Tk iak,;, we have

fl@1,... zr) = Z L1y o TryipCigir

il,...,i,,.
and Ciy.iy — f(al,ila- .- 7ar,iT)~

Proof. If f is multi-linear, then by definition we must have that

fl@r,..oze) = f(le,ilaml,-~-,Z$7-,ira7-,i,‘)
’il ir

= Z Tiyiy - T f(A16,0 0 ans,)

)

r
= E L1,y -+ Tr i Ciyoiy s
-

)
U1 yeeesly

where ¢;;. ;. = fa1,i,,---,0r5.).
Conversely, suppose the existence of constants as described in the theorem. For any index j € {1,...,r},
we have for addition that
/ /
flxy, ..o+l 2) = E xil...(a:ij—I—xij)...xircilu_“
[ERTPPR 28
= E Ly Ty, Z4,.Ciy.. iy + g Ty xij <o X5, Chy iy
[ - B1yeeylp

= f(zl,...,:cj,...,:rr)+f(z1,...,:c;,...,:rr),

and for scalar multiplication, we have that

f(JL‘l,...,Al‘j,...,$T) = E mil---Azij---xircil...ir
W yeeyin
= A g Tiy oo Ty T Ciy L,
P yeenyin
= )\f(-’l?l, y Ly 71:7‘) )
and therefore f is indeed multi-linear. O

The scalars ¢;, . ;. are sometimes referred to [1] as structure constants of f with regards to the bases
(@iy)iyy-- -5 (ai,)i.. They are also sometimes referred to [3] as coefficients or components or coordinates.
This leads directly to the following result:

Theorem 2. Let X1, ..., X, be finitely generated free modules with respective bases (a1,;)1<i<ny ;- - - (Gri)1<i<n,-
The functions
Viy...ip ZXl Xoee Xng)K

(1‘1, A ,J?p) — L1y --- xp7ip

where each xy in Xy is written as Z?:’“l Tki0k,i, form a basis of L(X1,..., X, K).



Proof. By the previous theorem, any element of £(X1,...,X,; K) can be written as a linear combination of
the ’Uilmipl

FiXix-x X, K
(.’ﬂl,...,l'p)H Z Cil.‘.ipvil‘..ip(xlv"'7xp)7
i1yt

and so the family generates £(X;,...,X,; K).
Suppose that there exists a family of coefficents (X, ...i,)1<i;<ns,...,1<i,<n, Such that

E Aiy iy Vin iy = 00(X0 0 X i K) -
=

Then for any p-tuple of indices (j1,...,Jp), with 1 < j; <nq,...,1 < j, <n,, we have that

> Nir iy Vi iy (@150 0p ) = Ok
=

But Uil...ip (al’jl gy ap,jp) = 6i1,j1 . 5ip,jpv that glves

Y iy Vinniy (@10 Gpg,) = Njyjy = Ok -
—~

As such, all the coefficients A;, . ; must be null, and therefore the family (vi,..i,)1<i,<n,,...1<i,<n, 18
linearly independent. O

Remark 1. Let us denote (¥ )1<;, <pn, the dual basis of X associated with the basis (ak,i, )1<iy<ny f Xk.
Then, for any p-tuple (z1,...,2,) of X1 x -+ x X,, we have

p
Vi iy (T15 5 Tp) = H at ™ () .
k=1

1.3 Matrices

1.3.1 Matrices as arrays of scalars

A matrix can be seen simply as a double-indexed family of elements of the commutative unitary ring K, for
example A = (a;)1<i<n;i<j<m, Which when represented visually would take the form

@11 ... O1m
A =
Ap1 .. Opm

We note M, ,,(K) the set of matrices with n lines and m columns with coefficients in K, and more
simply M,,(K) the set M,, ,(K).

It is clear that M,, ,,,(K) can be identified to K™, so that it has a natural structure of K-module.
Moreover, a multiplication is defined between elements of M,, ,,(K) and M,, ,(K):

for A = (Oéij)lgign;lgjgm € Mn,m(K) and B = (ﬂjk)lgjgm;lgkgp € Mmm(K), the matrix AB is the
element C' = (Vik)1<i<n:1<k<p of My, »(K) whose coefficients are given by

m
Yik = E aij Bk -
=1

10



1.3.2 Transpose of a matrix
Definition 20. If A = (a;j)1<i<mii<j<n IS an m X n matrix, written
aii e A1n

A=

Am1 -+ OGmn

then we define the transpose of A as the matrix A® = (a;i)1<j<n:1<i<m, written

ail oo Q1
At =

Alp -+ Qmn

The following property can be easily verified:
Proposition 7. If A is a matriz of My, o, (K) and B a matriz of M, ,(K), then (AB)! = B'A".

Definition 21. A square matrix A = (a;j)1<i j<n is said symmetric if A = At that is if ai; = aj; for each
(i,7) such that 1 <i,5 <n and i # j.

1.3.3 Matrices and linear maps
Linear maps between two finitely generated free K-modules can be represented by matrices.

Consider a linear map f : M — N, where M is a finitely generated free K-module with basis By =
(aj)1<j<m, and N is another finitely generated free K-module with basis By = (b;)1<i<n. As f is linear, the

image by f of any element x € M is uniquely determined by the images by f of the elements of the basis
(a;)1<j<m:

flag) = aijbi.
=1

Indeed, let z = Z;n:l xja; be a vector of M. Then we can write

n

f(l‘) = ijf(aj) = Zl‘j Zaijbi .

j=1 i=1

We can visually represent the vector x as the m x 1 dimensional matrix of its coordinates with regards
to the basis B of M:

Z1
T2
X=1. ,
Lm
and let us denote by A the matrix
11 e A1m
A =
anp1 ... Opm

11



Then f(z) is represented with regards to the basis Bo as

m
Q11 ... Oy z1 Zj:l T
Y = AX = . . . . . = N
m
pl - Opm T, ijl TjQnj

We say that A is the matrix of f with regards to the bases B; and Bs, that we write A = Matg, 5, (f)-
In the particular case where f is a linear form, that is N = K, we will always choose By = (1), and we
will note A = Matg, (f)

In the previous notation, the operations on matrices are defined in such a way that we get easily the
following equalities for f; € L(M;N), fo € L(M;N) and X € K:

Matg, s,(f1 + f2) = Matp, 5,(f1) + Matg, B,(f2)

Mat81732 (/\fl) = )‘Mat51752 (fl) .

Finally, if P is a third finitely generated free K-module with basis Bs, and if f € L(M;N) and g €
L(N; P), then
MatBl,Bg (g © f) = Mat»82-,83 (g)Mat31732 (f) )

and this is the main justification for the definition of the product of matrices.

1.4 Covariance and contravariance

We suppose that M is a finitely generated free K-module.

1. Contravariant coordinates

It can be proved that all the bases of M involve the same number n of vectors, called rank of M
(dimension if K is a field). Let B = (ai,...,a,) and B’ = (by,...,b,) be two bases of M.

For the sake of convenience, we represent these bases as row matrices whose components are vectors.
Then there exists an invertible matrix P of M,,(K) such that

(blbn):(alan)P

Let z be a vector of M, decomposed in these bases in z = Y | x;a; = >+, @}b;. In terms of matrices,

this gives
1 1‘& Ty
(a1 an) = (bl .. bn) = (a1 an) P 5
T, x! x!
which implies that
x) X1
— p1
x;b Tn

Hence, the matrix P gives B’ from B, but P~! gives the coordinates x from the coordinates x;. For
this reason, the coordinates of a vector z in a basis of M are said contravariant.

12



2. Covariant coordinates

Let us now consider the dual of M, that is the space M* = L(M; K) of linear forms from M to the
ring of scalars K.

To the basis B = (ai,...,a,) of M are associated n elements a’ of its dual, defined by a’(a;) = 4, ;.
That means that a’(} ., z;a;) = z; and the linear form a’ gives the j-th coordinate of the vectors
in basis B. It is easily seen that (a',...,a") is a basis of M*, called dual basis of B, and therefore M*
is also of finite type. Remark in particular that M and M* have the same rank n.

Moreover, the K-module M** = (M*)* is called the bi-dual of M, and the map ¢ defined on M by
rEMw— P, € M™™ |

where ¢, (u) = u(x) for any linear form u € M*, is a linear map from M to M™**. The image under ¢
of the basis B is the dual basis of the dual basis of B, and it turns out that ¢ realizes an isomorphism
of K-modules between M and M™**.

Remark 2. In the more general case - that is without the hypothesis that M is a finitely generated free
K-module - the map ¢ realizes a natural morphism from M to M**, which can be neither injective
nor sujective.

Let u be an element of M*. The matrix of u in the basis B is the row matrix Matg(u) = (a1 ... o),
where u(a;) = ;. The map g from M* to M defined by

ue M* —Yp(u) =ara; + -+ apa, € M

is clearly a non canonical isomorphism between M* and M (depending on the choice of B).

In the notation of the previous paragraph, it is well known that
Matp (u) = Matg(u) P .

Accordingly, setting Matg/(u) = (81 ... ), the vectors p(u) = Y1 | aza; and ¥ (u) = 1, Bibs
of M are related by the matrix equality

that is

Hence, the matrix P gives B’ from B, but P! gives the coordinates §; from the coordinates a;. For
this reason, the coordinates of the vectors associated to linear forms on M are said covariant.

1.5 Singular value decomposition of matrices
We will first introduce the notion of orthogonal matrices, which will be used in the singular value decompo-
sition. We restrain our studies to the case of matrices over the field of real numbers. For the complex case,

the transpose of a matrix should be replaced with its conjugate transpose, and orthogonal matrices with
unitary matrices.

13



1.5.1 Orthogonal matrices

For this subsection, we will place ourselves in M,,(R), which we will also sometimes note R™*".
Definition 22. An real inner product on a finite dimensional vector space over the field R is a mapping
VxV =R
(z,y) = (z,y)

such that, for all z,2',y € V and A\ € R,

e (z,z) >0 and (x,z) =0 only if z =0,
Az, y) = Mz, y),

¥ = (y,a),

o (z+2a y) = {x,y)+ (2, y).

(
e (
e (z,
(
Definition 23. A real inner product space is a real vector space equiped with an inner product.

As a consequence of the so called Cauchy-Schwarz inequality, it can be proved that a norm associated
with an inner product is given by ||z| = /(z, z).
The essential notion of orthogonality is closely linked to the scalar product.

Definition 24. Let V be a real inner product space.
e Two vectors z and y of V are said to be orthogonal if (z,z) = 0.

e A set or a family of vectors of V is said orthonormal if all vectors are of norm one, and any two
distinct vectors are orthogonal.

The most common inner product on R” is given for X € R™ and Y € R” by
(X,)Y)=X"Y,

identifying elements of R™ with column matrices. We will only be considering this inner product from now
on.

Definition 25. Let A be a square matrix of M, (R).

e The matrix A is said column orthogonal if its set of columns consitutes an orthogonal set of vectors
of R™.

e The matrix A is said row orthogonal if its set of rows consitutes an orthogonal set of vectors of R".

The following proposition enables to introduce orthogonal matrices.
Proposition 8. o A matriz A of M, (R) is row orthogonal if and only if it is column orthogonal.
o Furthermore, the matriz is orthogonal (that is row orthogonal, or in an equivalent manner column

orthogonal) if and only if its transpose is orthogonal.
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e The inverse of an orthogonal matriz is equal to its transpose.

Proof. Suppose that A is an n x n column orthogonal real matrix, with A ... A being the columns of
A. We must then have that A’ is a row orthogonal matrix. When we mutliply the two, we find that the 4j
index of A'A is simply (A, AW)). As each A is of norm one, and they are all orthogonal, (A, AW)) =g, ;
and so A*A = I,,. This means that A~! = A?, and as such, since A A* = I,,, the matrix A must also be row
orthogonal. O

1.5.2 Singular value decomposition

Singular value decomposition can be seen as a generalization of eigenvalue decomposition to all matrices,
not just non-defective square matrices.
We will first recall some definitions of eigenvectors and eigenvalues.

Definition 26. Let A be a matrix of M,,(R). An eigenvector of A is a nonzero vector v of R” such that
Av = A, with A being a scalar which is referred to as the eigenvalue of A associated with v.
In order to prove the main result (Theorem 3), we shall admit the following spectral result on symmetric

real matrices.

Proposition 9 (Spectral Theorem). If A is a symmetric matriz of M, (R), then there exists an orthogonal
matriz P and a diagonal matriz D such that

A=PDP (1.1)
the diagonal elements of D being the eigenvalues of A.

We note that because P is orthogonal, the equality 1.1 is equivalent to A = PDP?.

This spectral theorem says that there exists an orthonormal basis of R™ made up of eigenvectors of A.
Moreover, if the eigenvalues of A are > 0, the symmetric matrix A is commonly referred to as a semi-definite
positive symmetric matrix.

Definition 27. Let A be a real m x n matrix. A singular value decomposition of A is any factorization
A=UX V",
where

e U is an orthogonal m X m matrix,

e ¥ is an m X n matrix with non zero entries only on the diagonal (ie ¥;; = 0 for all (4,j) not in

{(1,1),(2,2),..., (m,m)}),

e V is an n X n orthogonal matrix.

Theorem 3. FEvery real m x n matriz admits a singular value decomposition.

Proof. Let A be a real m x n matrix.

The matrix A*A is a symmetric n x n matrix, and as such there exists an orthogonal matrix V and a
diagonal matrix A such that A’A = VAV, Let V(Y ... V(™ be the columns of V, which are eigenvectors
of A'A, and \q,...,\, be the diagonal elements of A, which are the eigenvalues of A*A.
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First of all, let us remark that these eigenvalues are > 0. Indeed, for each column vector X of R"™,
eigenvector of A'A related to an eigenvalue )\, we have X'A'AX = (AX)'AX = (AX,AX) = X'\X =
MX, X) > 0, that gives A > 0: the matrix A'A is semi-definite positive.

Since the columns of V are eigenvectors of A*A, we have that A'AV®) = \; V@ for each i € {1,...,n}.
Furthermore, since these columns are orthogonal, we have

(VOYAL AV = (VYN VO = X6, 5.
Define o; = v/A; and suppose that r of the oy, let us say o4,...,0,, are nonzero. For i = 1,...,r let
U® = Av® /o,

The U form an orthonormal family of r vectors of R™. We prolong this family into an orthonormal basis
of R™, and put those vectors as columns of a matrix U. We then have that the ij coordinate of the matrix
UtAV is

(UNEAV D) = (VO AT = (VAL AV D) Jg, = i ;.

As such, setting ¥ = U'AV, we have A = UXV?. O

1.5.3 The Moore-Penrose generalized inverse

Not every real matrix is invertible; however it is possible to define for every real matrix a generalized inverse
or pseudoinverse that has some useful properties. Its existence is a nice application of the singular value
decomposition.

Definition 28. Let A € R™*"™ be a matrix. A generalized inverse, or pseudoinverse of A is any n X m
matrix, noted AT, that satisfies the following conditions, sometimes called the Moore-Penrose conditions:

o AATA = A,

o ATAAY = AT,
o (AA*T)t = AA*,
o (A*A) = ATA.

Remark 3. It can be proved that the four Moore-Penrose conditions are also equivalent to the following ones,
which are usefull in calculations:

o ATAA' = A?

o AT(AT)!A= AT,

o AT(AT)IAT = AT,

o ATAAT = AL

The following result enables to show the existence of a generalized inverse for any real matrix ; it can be
easily verified by a simple calculation.
Proposition 10. Let A € R™*"™ be a real matriz with the singular value decomposition

A=UxV".

Then the matriz
VETUt,

where X1 is obtained from ¥ by inversing each non-zero element of its diagonal, satisfies the Moore-Penrose
conditions, and is therefore a generalized inverse of A.
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We then prove the uniqueness.
Proposition 11. Let A € R™*" be a real matriz. Then A admits a unique pseudoinverse.

Proof. If two matrices X and Y satisfy these conditions, then
X =XAX = X(AX)' = XX'A' = XX'A'AY = X AY,

and in an similar way,
Y =YAY = XAY |

thus X =Y.
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Chapter 2

An introduction to tensors

Throughout the chapter, K will refer to a commutative unitary ring.

We will first use an approach detailed in [3], where tensors are defined in the context of multi-linear forms
- this approach is often used by physicists. We will then use a more abstract approach detailed in [10] and
[9], and finally link the two approaches in the final section.

2.1 Tensor product of multi-linear forms

2.1.1 General definition
Definition 29. Let r be a positive integer, Xi1,..., X1p,,..., Xp1,..., Xrp, K-modules and

U12X11><--~XX1PI—>K,

Up: Xpg X X Xy, = K
multi-linear forms on said modules. We define the tensor product of uq, ..., u, as the map

UL Q- DUy - (an-~-><X1p1)><"'><(Xr1X"'Xer7.) — K

such that for all (.’L‘ll, sy Tlpys ey Tplye e ,xrp,,,) S (Xu X - X lel) X - X (X'rl X - X er,y_)7
UL ® - QU (L1215, Tapys e s Tty v Trpn) = UL (T115 -+, T1py ) o Up (X1, - oy Ty, )-
The multi-linearity of uq, ..., u, allows us to immediately deduce the following property.
Proposition 12. If uy,...,u, are multi-linear forms, then u; ® - -+ ® u, is a multi-linear form.

Proposition 13. The tensor product mapping

E(X117~-~7X1p1;K) X+ X L‘/(Xrla--wX'r'pr;K) —>£(X117~-~7X1p1a-~-aX7'17~-~7X7-pT;K)
(Up,..up) 2 U @ @ Uy

1s multi-linear.
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Proof. We will prove the result for » = 2 in order to simply notation; moreover, we restrict ourselves to
the case of the left-handside, but the right-handside case is very similar. Let u,u’ € £(X7,...,X,; K) and
ve L(Y,...,Y,; K) be multi-linear forms, and A, p be scalars in K. We have that

(A + pu’) @ v)(z1,. oy Tpy Y1y e+ Yq)
= Au+pu) (1, )oYy, Yg)
=Au(@1, . 2p)0 (Y1, Yg) ot (T, xp) (Y, -, Yg)
=M @v(T1,. ., Tpy Y1y Yg) + [0 @V (T1, . Ty Y1y Yg)

for all x1,...,%p,y1,...,Yq in Xq,...,Xp,Y1,..., Yy, hence the result. O]

2.1.2 Case of finitely generated free modules

We suppose that X7, ..., X, are finitely generated free modules with respective bases (a1;)1<i<nys - - -+ (@r,i)1<i<n,.-

We can reformulate Theorem 2 using this latter definition, in the following manner:
If f: X1 x - x X, = K is a multi-linear form, then there exist constants Ciy..i, N the scalar ring K such
that

1,2 1,1,
F= Y gt @ @alt

11 ..ip
where a®"*, ... aP' are respectively elements of the dual bases (a'7')1<j,<n,,- -, (aP77)1<j,<n, -
In other words, the functions
/Ui1,..-,ip : Xl X o+ X Xp - K (Il, . ,l’p) — L1y - - 'xp,i,;
can be written
Vipoiy =01 @ @Al

We can also reformulate Theorem 1: a map f: X; x --- x X;, = K is multi-linear if and only if there exist

constants c;, .., in K such that, for any p-tuple (z1,...,z,),

f(:rla' <. 7:17;)) = Z Cil...ipal’il & .- ®ap’ip(x1,. . ,xp).

11,-++5lp

2.2 Tensors

We will now introduce tensors as a particular type of multi-linear form, in the way commonly used by
physicists. The following definition will refer to the terminology of covariance and contravariance introduced
in section 1.4.

2.2.1 General definition

Definition 30. A tensor of class (p) or tensor of covariant index p and contravariant index ¢

on the module M is a (p + ¢)-linear form on (M*)? x MY, in other words an element of the module
LM*,...,M*,M,...,M;K) (with p occurrences of M* and ¢ occurrences of M). We note T} (M) the

module of tensors of class (f;) on M.

Remark 4. 1. Ifuw € TP(M) and v € T{ (M), then u ® v can be seen as a tensor of class (Zig) Indeed,

u ® v is a multi-linear form on (M*)? x M9 x (M*)" x M?#, which is isomorphic to (M*)PT" x MI*s,
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2. The tensor product is generally not commutative: if f and g are two multi-linear forms, then f ®
g(x,y) = f(x)g(y), while g® f(x,y) = g(z) f(y), when these two expressions make sense (it is possible,
depending on the domains of f and g, for f(z)g(y) to be defined while f(y)g(z) is not defined).

Remark 5. Let us recall that there is a natural morphism from M to its bidual (see Remark 2). Given
(T1,. ., @p, UL, .., ug) in MP x (M*)?, this allows to consider tensors of TP (M) written in the form x; ®
@y @U@ - @ Ug, that is the multi-linear form on (M*)P x M? whose value at (v1,...,Vp,Y1,---,Yq)
is the scalar vi(z1) ... vp(zp)ur (Y1) - . uq(yq)-

2.2.2 Tensors over a finitely generated free module

Let T be a tensor of type (5) over a finitely generated free module M. Suppose that (aq,...,a,) is a basis

of M and (a,...,a") the associated dual basis of M*.
Following Theorem 1, for any set of linear forms u1,...,u, and vectors x1,...,x,, we have that

_ i1 i
T(u1,...,Up,&1,...,Lq) = E Uiy - Upi, T, - Tq g, L (a0 0" ag,,. .. a;,),

Tseelp 3 J15050q

where each uy is decomposed as >, uk;a’, and each xy as 5, zy ja;.

We can therefore see that any such tensor T is uniquely determined by the values of T'(a™, ..., a’», Qjys- ooy ag,),
that we note

Z‘lvuuip

jl 7~~qu
and refer to them as structure constants, or components, or coefficients, or coordinates, of 7" with
regards to the chosen basis, as was done in a more general case in section 1.2.2.

Recall that because M is finitely generated, it is isomorphic to its bi-dual M**. Indeed, as was seen
in section 1.4, the dual basis of the basis (a;)1<i<n is formed by the linear forms (a’);<j<, such that
a’(a;) = 6;, 5. As such, the family of linear forms on M*

fa, : M* = K
u — u(a;)
forms the dual basis of the basis (a?)1<j<, of M*, since f,,(a’) = &; ;. We can identify each f,, in M** with

the corresponding a; in M, and as such M** is isomorphic to M.
The following theorem is an immediate consequence of Theorem 2 and the previous identification.

Theorem 4. Let M be a module of finite type, (a1,...,an) a basis of M and (a',...,a") the associated
dual basis of M* ; then the elements of the form

ai, ®"‘®az‘p®ajl ® - ® ale
constitute a basis of TP (M).

2.3 Tensor product of K-modules

The two previous sections introduced tensor products of multi-linear forms and tensors and mutli-linear
forms, using the fact that there is a multiplication defined on the scalar ring K. We will now consider
the more general notion of the tensor product of modules, which can be used to combine elements of any
K-modules, and in particular multi-linear maps between K-modules that are not necessarily multi-linear
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forms, ie that do not necessarily map to the scalar ring K. Because it can be used to combine elements
of arbitrary vector spaces, the tensor product of modules when applied to individual elements is sometimes
called the outer product.

We shall also study the links between this definition and the previous notions when finitely generated
free modules are involved.

2.3.1 Construction of the tensor product

Let M and N be two K-modules. One way of approaching the tensor product of two modules is to view it
as a way to code a bilinear map on M x N as a linear map on a new module M ® N. So our goal will be,
given a pair of K-modules M and N, to construct a new K-module M ® N and a function 7 from M x N
to M ® N such that for every K-module R and every bilinear map ¢ : M x N — R, there exists a unique
¢ from M ® N to R such that ¢ = ¢ om.

We will prove the existence of such an object by constructing it, and then deduce its uniqueness up to
isomorphism.

To construct M ® N, we start by taking the free module over M x N, that is

Faen ={ Y. Amn(m,n); A€ AN and #{(m,n) € M x N ; Appn) # 0} < +00} .

(m,n)eMxN

We consider the sub-module G of Fy;« n that consists of all the finite linear combinations of elements of
F v that can be written

(m + m/7 ’I’L) - (m7 n) - (m/v Tl)
a(m,n) — (am,n)
a(m,n) — (m,an)
(mv n -+ TL/) - (mv n) - (m7 n/)v
for some a € K, m, m’ € M and n, n’ € N. Next, we will simply define M @ N = Fy;«n/G and check

that it works.
Here, we note (m,n) for the class of (m,n) in Fyr«n/G. We have

(m + )

= (m+m',n) = (m,n) = (m’,n) + (m,n) + (m’,n)

=0+ (m,n) + (m/,n) = (m,n) + (m', n),

and by a similar process, we find

(m,n+n') = (m,n) + (m,n’) .

For scalar multiplication, we have

(am,n) = (am,n) +0

= (am,n) — a(m,n) + a(m,n)

=04 a(m,n) = a(m,n) = a(m,n),

and similarly

(m,an) = a(m,n) = a(m,n) .

Let i : M x N — Fpr«n be the canonical injection and let m : Farxny — Farxn/G be the canonical
quotient projection. The previous paragraph shows that the mapping

7T=7T00i:M><N—>F]W><N/G
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is bilinear.
Now if we take a bilinear map ¢ : M x N — R, where R is any K-module, we can completely define a
corresponding map ¢ extending ¢ to Fyrxn

J) : FM><N — R
Z /\m,n(ma n) — Z /\m,nd)(ma n)7

(m,n)EFMxN (m,n)EFMx N

where both sums are over a finite number of non-zero terms, that is A, , = 0 for all but a finite number of
(m,n). B
This map ¢ is linear, as for all scalars p; and ps and for all elements Z(m’n)eMxN)\m,n(m,n) and

Z(m,n)EN[XN )\;mn(m’ n) of FJ\/[XN7

S Y Amalmn)tp Y N mn) =00 YD (uhn + 2N, (m,n)

(m,n)eEM XN (m,n)eM XN (m,n)eMxN

= Z (/1'1 )\m,n + ,U/Z)‘;n,n)(b(mv n) = Z Nl)‘m,nqb(mv n) + Z M2>\;n,n¢(m7 n)

(m,n)eM XN (m,n)eEM XN (m,n)eM XN

= H1 Z )\m,ngb(mv n) + iz Z /\;n’nqﬁ(m, n) = UMZ)( Z Am,n (m,n)) + ﬂ2¢~7( Z /\{m,n (m,n)),

(m,n)eM XN (m,n)eEM XN (m,n)eEM XN (m,n)eM XN

where as before only a finite number of A, , and A7, ,, are non nul.
By bilinearity of ¢, we have kequS O G. Thus (j~> is factorisable via the quotient: there exists a linear map

gf_) : FMXN/G — R
Z)\i(mhni) — é(z Ai(mi, n;))
el el

such that for all (m,n) in M x N

¢(ma n) = ¢(ma TL) = 5((m’ TL)) =¢o ﬂ—(ma TL) )

which is exactly the property we wanted.

We have successfully shown the existence of a module M ® N such that every bilinear form on M x N
can be uniquely factored through the tensor module via a linear map; now we will show that it is unique up
to isomorphism.

Suppose that there exists another such module, which we will call P, that has the same property. Let
p be the bilinear map from M x N onto P such that any bilinear map ¢ on M x N can be factored via a
unique linear map ngS such that ¢ = ngSO P.

Then there is a unique linear map 7 : P — M ® N such that m = 7 o p, and there is also a unique linear
map p: M ® N — P such that p = ponw. Therefore we have

Tm=fop=(Fop)om,
p=pom=(pom)op.
But we also know, by definition of M ® N and of P, that there is a unique function from P to P that

factors p, because every bilinear function from M x N to another module can be uniquely factored through P.
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Similarly, we have a unique function from M ® N into itself that factors 7. Now these must both obviously
be identities, so we have that © and p are one-to-one and inverses of one another. In conclusion, 7« and p
realize an isomorphism between M ® N and P.

This concludes the uniqueness of M ® N up to an isomorphism.

We have just shown the following result:

Theorem 5. Let M and N be K-modules. Up to an isomorphism, there exists a unique K-module M & N,
and a unique bilinear map m : M x N — M ® N, such that for any K-module R, and any bilinear map
¢: M x N — R, there is a unique linear map ¢ : M @ N — R such that ¢ o = ¢.

Remark 6. This is known as the universal property of the tensor product of K-modules.

Remark 7. The converse of the result, that if ¢ is a function on M x N factored though a linear map on the
tensor product module (that is of the form ¢ o 7w with ¢ linear) then it is bilinear, is also true. Indeed, by
bilinearity of 7 and linearity of ¥, we have

p(Am + pm/,n) = P((Am + pm') @ n) = P(Am @ n + pm’ @ n)
= M (m@n) + pp(m’ ©n) = Ap(m,n) + pg(m’,n) ,
and similarly on the right hand side.

Definition 31. Given M and N two K-modules, their tensor product M ® N is defined as the K-module
quotient of the free module on M x N by the previously defined submodule G, that is M @ N = Fy«n/G.

In the future, we will write m ®n for the class of (m,n) in M ® N. As mentioned before, in some sources,
the tensor product of two elements of different modules is sometimes also called the outer product. We give
a definition using this terminology here.

Definition 32. If M and N are K-modules we define the outer product of m € M and n € N to be
meneM®N.

Figure 2.1 illustrates the construction of this space with a commutative diagram, where m = 7 o 4.

M x N
) @
i
‘ ¢
Fyxn > R
¢
™0
A,

M®N:FM><N/G

Figure 2.1: Commutatif diagram

The following proposition generalizes the theorem and remark to the case of p K-modules.
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Proposition 14. Let My, ..., M, be K-modules. We define by induction
M1®'~®Mp:M1®(M2®~~®Mp).

Let f be a function from My x -+ - x M, into some K-module R. Then f is p-linear if and only if there exists

a linear map f: My ® ---® M, — R such that f(z1,...,2p) = f(21 ® --- @xp) for all (x;); in (M,;);.
Proof. We proceed by induction. The initial case, for p = 2 is already proven. Suppose the result true for
p—12>2,and let f be a function from M; x --- x M, into R. Then if for each z, € M, we call f,  the
function from My x -+ x M1 to R which associates to each (x1,...,7,_1) the element fx1,. o @xp_1,2p)
of R, then we can factor this function through M; ® --- ® M,y into f,,. And then we can simply define
f(xl R ®Tpo1 ® :Ep) = frp(;pl R ® xp—l)-

O
Proposition 15. The tensor product of K-modules is associative up to isomorphism: we have
Le(M@N)~(LM)® N .
Proof. For any n in N we define the mapping
¢n:LxM—L®(M®N)
(I,m)—»1®(men).
This mapping is bilinear, so we can factor it via
¢, LM — L®(M®N)
[@m—=1®(men).
Since the mapping n +— ¢,, is linear, the mapping
O: (LOM)QN - L®(M®N)
lem)en—¢,(ledm)®@n=1® (mcn)
is linear.
Similarly, we can fix an [ in L and construct
Y :MxN—=(LM)®N
(myn) = (l@m)®n
which we then factor via
P, M@N— (LeM)® N
men— (l®m)Rn.
Once again, the mapping [ + 1), is linear so this makes the mapping
UV:L(M®N)—= (LeM)® N
I@(men)—= P, (man)=(10m)on
linear.
We have that ® and ¥ are inverses of each other, so they are bijections, hence the result. O
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The following proposition gives a commutative property of the tensor product of K-modules.

Proposition 16. There is a unique isomorphism from L ® M to M ® L that sends | @ m to m Q1 for each
lin L and each m in M.

Proof. Let ¢ : Lx M — M ® L be the bilinear function that to each (I, m) associates m®! in M ® L. By the
universal property proved in Theorem 5, there is a unique ¢ : L& M — M ® L such that ¢(I@m) = ¢(I,m) =
m ® [. Similarly, take ¢ : M x L — L ® M to be the bilinear function that to each (m,!) associates | ® m.
Once again, by the universal property proved in Theorem 5, there is a unique linear map ¢ : M ® L — L@ M
such that Y(m ®1) = ¥(m,1) =1 @ m.

We have ¢ o ¢ = idpgar and ¢ 01 = idyer, hence L ® M and M ® L are isomorphic. O

Remark 8. It is possible for the tensor product of two non-trivial K-modules to be trivial. For example, if
M®N = 7Z/2Z®7/3Z is isopmorphic to {0} as for any m and n we have m.1p;@n.1y = mn(3—2)(1®1n) =
mn[(3.1y ®1y)— (1 ®2.1N)] =mn[(0.1y ®1n) — (1 ®0.1x)] = mn[0(1y ®1y) — 01y ®1y) = Opnen-
2.3.2 Properties

We will now list general properties of the tensor product of K-modules.

From the definition of M ® N we get immediately the following proposition.

Proposition 17. The tensor product M ® N is generated by the set of the "pure tensors” m®n for m in
M and n in N.

We have shown that 7 is bilinear, so we get the following equalities:
Proposition 18. For any modules M and N, and any elements m € M andn € N,
alm®n) =(am) @n=m® (an) ,
(m+m)@n=mean+m @n,
and similarly for the right side.
Moreover, Theorem 5 has the following important corollary.

Proposition 19. For any K-module R, the module L(M,N;R) of bilinear maps from M x N to R is
isomorphic to the module L(M ® N; R) of linear maps from M @ N to R.

Proof. In the notation of Theorem 5, consider the map
L:L(M,N;R)— L(M®N;R) ,

¢ ¢

clearly well defined on all elements of £(M,N;R). The map L is linear, as for all A € K and for all
¢7¢17¢2 S E(M7N7R)

L(¢1 + ¢2) = 1 + 2 = ¢1 + ¢2 = L(¢1) + L(¢2)
L(A\p) = Ao = AL(¢)

by the universal property of M @ N. Indeed, ¢1 + ¢2 can be factored via ¢1 + @2 since it is a bilinear map
on M X N. As ¢; can be factored via ¢; and ¢2 can be factored via ¢2, ¢1 + ¢2 can also be factored via
@1 + ¢o. But then ¢ + ¢o = @1 + ¢o as the factorisation is unique.

Similarly, we can factor A¢ through A¢ and through A¢, hence the latter two mappings are the same.
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Finally, to show that L is a bijection, take any f € L(M ® N; R), and consider the function

¢o:MxN—R
(m,n) = f(m®n).

This ¢ is bilinear, as for all A € K, m € M andn € N,

p(m+m',n) = f(m+m')@n)=f(me@n+m' @n)= f(men)+ f(m @n)=d(m,n) + ¢(m',n)
o(dm,n) = f(dm@n) = Af(mn) = Ap(m,n),

and similarly on the right hand side. To use the language of Theorem 5 we have ¢ = f o .

This function is also unique, as any other function with the same property would have the same image
for all elements of M x N, and as such L is an isomorphism, since every element of £L(M ® N;R) has a
unique antecedent by L.

The universal property of M ® N implies that every bilinear ¢ on M x N can be associated with a unique
linear f on M ® N. Since we have just shown that every linear function on M ® N has a unique antecedent,

hence the result.
O

Remark 9. By the previous proposition, the module £(M ® N; R) is isomorphic to £L(M, N; R). Thus, by
proposition 6, the modules L(M; L(N; R)) and L(M ® N; R) are also isomorphic.
Following Proposition 14, this can be generalized to p-linear maps over p modules.

2.4 Links between diverse notions of tensor product and tensors

2.4.1 A mapping from M@ - @ M@ M*®---®@ M* to TP (M)

Proposition 20. Suppose K is a commutative ring. Let M be a K-module and p and q positive integers.
Consider the module M @ --- @ M @ M* @ --- ® M*, with p occurrences of M and q occurrences of M*.
There exists a unique morphism

M - @MeM @ @M — TP (M)

that sends the element r1 ® - R Tp QU1 X - QUug of M Q- QM OIM* ®--- Q@ M*
to the element 1 @ -+ @ T, @ ug @ -+ @ uq of TP(M) (following Remark 5, we recall that this latter
expression is the multi-linear form on (M*)P x M? whose value at (vi,...,Vp,y1,...,Yq) s the scalar

vi(z1) .- vp(@p)ur(yn) - - uq(yq) )

Proof. Since the map MP x (M*)? that sends the element (z1,...,%p,u1,...,uqs) of MP x (M*)? to the
element 71 ® -+ ® ) @ u; @ - - @ uy of TP(M) is multi-linear, the proposition is an immediate corollary of
the universal property of the tensor product of modules (see Proposition 14). In other words, the morphism
7 is completely defined by its values on the pure tensorsof M @ --- QM Q M* ® --- @ M*.

O

Remark 10. If M = Z/pZ, and K is Z (so that M is not a free K-module), then TZ(M) = {0} is not
isomorph to M ® M. As such, in this case the morphism j introduced above is not an isomorphism. Indeed,
consider the mapping from M x M to M associating to (z,y) the product zy (that is the multiplication of
integers modulo p). This is a bilinear non trivial map, and by the universal property of M ® M, it can be
factorized through a linear map on M ® M, which shows that M ® M is not reduced to its zero element.
For the case of T?(M) we have that any element can be uniquely identified by its image of basis element,
but M* = {0}, and so T?(M) = 0.

26



Remark 11. We have just shown that while the notions of tensors defined as multi-linear forms and tensors
defined as elements of the tensor product of K-modules do coincide when the K-modules are finitely generated
free modules, they are not necessarily identical. We have also seen that the tensor product of two non-trivial
K-modules can be trivial.

2.4.2 On tensor product of linear maps

The results exhibited here above hold not only for the case of tensor products of linear forms, but also for
tensor products of linear map with values in K-modules.

Proposition 21. Let L, L', M and M’ be four K-modules. Let
w:Ll — L

and
v:M — M

be two linear maps. Then there exists a unique linear map f from L M to L' @ M’ such that f(x @ y) =
u(z) @ v(y), for all x in L and y in M.

Proof. Let ¢ : L x M — L' ® M’ be the map that sends (x,y) to u(xz) ® v(y). We verify that ¢ is indeed
bilinear:
oAz + N’ y) = Az +Na') @y
=Mz @y) + N(' @y) = A(x,y) + N2, y)

by bi-linearity of the tensor product, and similarly on the right side. As ¢ is bilinear there is a unique linear

map ¢: L ® M — L' ® M’ such that ¢(z ® y) = ¢(z,y). We chose f = ¢. O
This unique linear map will now be formally defined.

Definition 33. Let L, L', M, M’ be K-modules and u : L —+ L' and v : M — M’ be linear maps. The
tensor product of linear maps v and v is the unique linear map, noted u®v that associates to each [ @ m
in L ® M the element u(l) ® v(m) in L' @ M’.

Notation The notation u®v for the tensor product of linear maps u and v is to distinguish u®v from the
element u ® v of L(L, L") ® L(M,M’). However, let us remark that the mapping
L(L;L) x L(M; M) — L(L® M;L'®@ M')
(u,v) = u@v

is bilinear, as this is easily deduced from the fact that, for each pure tensors t @ y € L ® M,
[+ ) &0](x © y) = (u + pad)
= (Au(z) + ' (7)) ® v(y) = Au(z)

= Pu@v](z @ y) + [uu'@v)(z @ y),

(x) @ v(y)
®@v(y) + pu' () @ v(y)

and similarly on the right hand side. The universal property of Theorem 5 implies that it can be uniquely
factored via a linear map

L(L;L)® L(M;M") — L(L® M; L' @ M)
UV uRQU ’

This morphism is called the Kronecker morphism. In this general case, this morphism is neither injective
nor surjective, although it can be shown to be injective in the case of finite dimensional vector spaces.
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Proposition 22. Let L, L', L", M, M’ and M" be modules. Let
uw L — L' u' L' — L
v M—-M VM — M
be linear maps. Then
(u// ou’)@(v” O’U/) _ (u1/®vu) o (ulévl).
Proof. Let x be an element of L and y be an element of M. We have that
[(u” o )@ (" 0 v)(z @ y) = (v o) (z) ® (v" 0 v')(y)

=u"(u/(z)) @ v"(v'(y)) = v"@v"(/(z) @'(y))
= (u"@v") o (u'e)(z @y),

for all x in L and y in M, hence the result. O

We now have different types of tensor products. First, there is the tensor product of linear or multi-linear
forms (tensors as commonly used in physics being a particular case of this), as described in [3]. Second, we
have the tensor product of K-modules, and the definition of pure tensors as elements of this tensor product
of K-modules. Finally, we have just seen the tensor product of linear maps, which we noted ®, so as to
distinguish © ® v from its image by the Kronecker morphism u®wv.

2.4.3 The special case of tensor product of finitely generated free modules

In this section K is a commutative ring and L and M are K-modules.

A base for the tensor product of modules

We will begin with a technical result which will enable us to determine a base for the tensor product of two
finitely generated free modules.

Proposition 23. for any families of K-modules (L;); and (Mj;);,
@DrLe EBM ~ DL o M),
% 1,
Proof. Consider the function

Il : (H L;) x (H M;) = [](Li  Mj)

((12)0), (my);) = (s ®m5)e
It is bilinear as
T (L)i + p(l7)is (my);) = (M + pl) @ my)i 5
= (N @my + pl; @ my)i; = Ml @ my)ij + p(l; @ my)i
= A ((li)ia (m]) ) +MH((Z )u (mj) ) s

and similarly on the right hand side. By the universal property of the tensor product of K-modules, there
exists therefore a unique linear map, determined by the values on the pure tensors
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I ([T o e T M) = [k @ M)
(L) ® (my); = (I ® my)ij.

When we compose this linear map with the canonical injection
i (@@L e @m) — qL L) e M)
i J i J
we find that the mapping
o (Pr)e @ M) - PL:e M)
i j i,j

(l:)i ® (myj); = (L @ my)i

is linear, as it is a composition of two linear maps, and well defined, as the image of any family with a finite
number of non nul elements will be a family with a finite number of non nul elements.
For each pair of indices i, j we define

¢ij i Ly x My — (@Lz) ® (@M])

(liymy) = (1) @ (my).

These functions are bilinear, as can be simply verified, so there exists for each ¢, j a unique linear map
biy L@ M; — (D Li) o (@ M)
i J

(li @ mj) = (l;) ® (my).
These linear maps can be combined to create a linear map

T @(Li ® M;) — (@ L) e (@ M;)

(i @my)i; = ()i @ (my),

which is the inverse of ®, hence the isomorphism. O

Proposition 24. Let L and M be finitely generated free modules. Let (a;)1<i<p be a basis of L and (bj)i1<j<q
be a basis of M. The products
(ai @ bj)i<i<pi<i<q
form a basis of L ® M.
The rank of L @ M is the product of the rank of L and the rank of M. In particular, if K is a commutative
field, then
dim(L @ M) = dim(L)dim(M).

Proof. By Proposition 23 we have

Lo M= (P Ka); @ (P Kb)); ~ P K(a: @b;).
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Isomorphism between M @ --- @ M @ M*®---® M* and TP(M)

We come back to the mapping j from M @ ---®@ M @ M* ® ---® M* to TP(M) of Proposition 20.

Proposition 25. Suppose M be a free K-module of finite type, p and q positive integers and consider the
module M @ - - QM Q M*® ---® M*, with p occurrences of M and q occurrences of M*.
The map

JIM@--- oMM ®--- @M — TF(M)

that sends the element r1 @ -+ R Tp QUI X - QUg Of M Q@ QM OIM* ®--- @ M*
to the element 11 ®@ -+ @z, @ Uy ® -+ @ uq of TP(M) is an isomorphism.

Proof. Suppose that M is finitely generated, with basis (a;)1<i<n. Then we have that the elements
(@i, ® - ®a;, ™ ®---® ) 1<iy, iy jr.jp<n

form a basis of M ® --- @ M @ M* ® --- ®@ M*, and their images by j form a basis of TP(M): j is an
isomorphism.

O

Tensor product of linear maps and Kronecker product of matrices

Let L, L', M and M’ be free K-modules of finite type. Let
u:L— L andv:M— M

be linear maps. We are going to show how to write the matrix of u®uv as a function of the matrices of u and
.

Let us consider A = (a;)1<i<p, B = (bj)1<j<q, C = (¢k)1<k<r and D = (d;)1<i<s bases of L, L', M and
M’ respectively. Let A = (ij)(ij)ef1, ..o} x{1,...q} a0d B = (Bri)k.1)e{1,...ryx{1,...,s} be the matrices of u
and v in these bases:

[a1 ... gy
A=Mapu)=| 1 |,
g1 o gy
_ﬂll o .. ﬂlr
B=Mcpw)=1|: .
1Bt --+ Bor

For the sake of convenience, we identify in the following elements of the module L, L', M and M’ with their
column matrices of coordinates in the chosen bases. If x and y are elements of L and M, then (u®v)(z,y)
will be the element =’ ® ¥’ with

T = o

/
xr =

I — . .
Ty = > Qqii
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and )
Yy = Zz ﬁliyi
y' = :

yé = Zi ﬂsiyi

In order to write the tensor products x ® y and 2’ ® y as column matrices, we will need to chose a way of
ordering the elements of the bases (a; ® cx)1<i<p,1<k<r 08 L ® M and (b; ® dj)1<j<q,1<i<s of L' @ M'. We
will chose to increase the indices of the c; before the a; and the d; before the b;.

Then, we can write the tensor product of vectors in the form

!,

11 1Y
!,

T1Yr 1Y,
!,

T2U1 Loy

. ’ ’ .

rTRQY = and ' ® Yy = ’o
T2Yr ToYs
!0

xpyl mqyl
!0

TpYr TqYs

We note that this convention of having the y;, change before the z; and the y; change before the mg
is completely arbitrary. It is possible to use a different symbolic formalism, for instance alternating the x;
before the y;, and arrive at the result so long the same formalism is used during the entirety of the calculation.
When the bases are ordered according to the previous convention, the matrix of u®v is equal to

[a11B11 ... oanfir B .. B ... apBin .. 0Py
a11for ... ofar oi2for ... a2Br2 ... apifor ... apiBor
0411651 cee allﬁsr a12ﬁsl s alQﬁsr s alpﬁsl e alpﬁsr
ag1f11 .. o21Bir 2B ... @B ... agpfu ... B
0421651 s Oé21ﬂsr CV22ﬁsl s a22ﬂsr e OéQpﬁsl ce a2pﬂsr
aqlﬂll ... aqlBlr anﬁll .. O‘q25r1 e Cquﬁll CIIE aqulr

_aqlﬂsl cee Oéqlﬂsr aq2651 cee aq25s’r‘ cee Oéqpﬂsl cee aqpﬁsr_

We can see that this matrix is obtained from the matrix A of u replacing each coordinate «;; by the
matrix block a;;B.
This is sometimes called the Kronecker Product of two matrices and noted A ® B.

Remark 12. Were we to adopt the convention of having the x; change before the the y; and the x; change
before the y;, the matrix of A ® B would be the matrix composed of the blocks b;; A, rather than the blocks
aijB as is with the current convention.

31



Chapter 3

Hypermatrices and tensors

In this section, F' will denote a commutative field.
Hypermatrices are generalizations of matrices to families of scalars with more than two indexes. We will
also see that they can be seen as representing the coefficients in a given basis, or set of bases, of a tensor.

Notation We will sometimes use the notation (n) to denote the set {1,...,n}.

3.1 Basic definitions

Definition 34. A function f: (ny) x --- x (ng) — F will be referred to as a hypermatrix of order d.

Notation The set of hypermatrices on nq,...ng with coefficients in the field F' will be denoted F™t>* %74,
A hypermatrix can also be represented in the form A = [a;, .. ;,] with i, € (ny) for k € (d). A hypermatrix
of order 2 is a standard matrix, and as such the set of m x n matrices over F' can be referred to as either
M xn(F) or Fm>™,
Much as with matrices, we define termwise addition in the following manner: if A = [a;,. .i,]i;e(ny),....ize(na)
and B = [b, . _izliye(ny),....ia(ng) are two hypermatrices, of F"1**"4 then

A+ B= [ai1~~id + bil~~id]i1E(n1>,~~~,id€<nd>

will be their sum. For scalar multiplication, if X is a scalar of F', and A = [ai,..i,)ise(ny),....inc(ng) 1S @
hypermatrix, then
A =[Ny iglive(na)..ige (na)
will be the their product.
We define the standard basis of F™ > %" to be £ = {Ej, 4, : i1 € (N1),...,iq € (ng)} where E;, _,
denotes the hypermatrix with a (i1,...,44) coordinate of 1 and zeros everywhere else.
The standard matrix multiplication can be generalized to hypermatrices.

Definition 35. Let X, = (5511]) c Fm ><7L1,...,Xd = (3;21]) € F™MaXna are matrices and A — [ailmid] .
FrmixoXnd g o hyper matrix, their mutli-linear matrix product is
A/:(X17"'7Xd)'14.:[a/. }EleX“'de

Zl...’id

defined by

/ _ 1 d
iy .ig = E : Livky + - LighgUky...ka-
ki,...,kq

We have the following properties:
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Proposition 26. If A € F™"1X " X"d js q hypermatriz, and for i € (d) let X; € FliX™ and Y; € F™>*" qre
matrices, then
(Xiyeo s Xa) (Vi Ya) - A) = (X1 Vi, o, XgYo) - A,

Proof. By calculating we have

(Xla"'de)'((Yla"'ayd)'A)

- 1 d
:(Xl,...,Xd)- Z yj1k1"'yjdkd'ak1mkd

J1€{mi),....ja€{ma)

_ E : d
o xll]l e Zdjd z : yjlkl s Yjakg " Ak kg
L7 i1€(l1),esia€(La)
- Z Z xll]lyjlkl o Zd]dy]dkda‘kl kq
15--2Jd k1,...,ka el ine (L)
- Z Z mlljlyjlkl z :xldjdyjdkd)alﬁ kg
ki,...ka Ja el i i)

= (X1Y1, ..., XqYy) - A
O

Proposition 27. If A and B are hypermatrices in F™* %"« and B are scalars and for k € (d) X €
FmeXm% qre matrices, then

(Xl,...7Xd> . (OzA-l—BB) :Oé((Xl,...,Xd)-A)+B((X1,...7Xd) B)
Proof. Once again by calculating we find

(Xla L) 7Xd) : [aail...’id + /Bbil...id]i1€<n1> ..... idG(’nd> =

1 d
Z Tigy - Tk, (i, iy 4 By Ly

i1€(n1),..,ia€(na)

— E E 1 d
=« xllkl A de}dakl k?d + /B ‘/Eilkl M xidkdbk1~~kd

. . ki,...,k . .
11€{N1),...,iqa€{ng) Loeeold 11€(N1Y,...,iaE(nq)

:Ol(Xl,...7Xd)-A-i—ﬁ(Xh...,Xd)'B.
O

Definition 36. If 7 € &, is a permutation, and A = [a4,...iy]i, e(ny),....ise(nd) is & hypermatrix of order d,
then we define the m-transpose of A to be

A" = [Qr(iy).m(ia))is €(na)sensia€(na) -

The space of F™*" of order d hypermatrices on a field F' is a vector space for these operations. Indeed,
it is an abelian group with a scalar multiplication that is distributive with regards to the addition operation.
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Hypermatrices and tensors Let V7,..., V; are finitely generated free vector spaces of dimension ny, ..., ng
over the field F' = R or F' = C, with respective bases B, ..., B¢ where each B' = {bi,..., bﬁb} If the tensor

T € V1 ®---® Vg has the structure constants or coordinates in the basis (b}, ® -+ ® bi)he(m),.‘.,ide)nd) of

(@i ..ig)is,....iq then we can represent it in the basis as the hypermatrix

A=la;. 4,) € Frxxnd,

Furthermore, if B'Y,...,B'? is a second set of bases for Vi,...,Vy, and X1,..., X, are the respective
change of basis matrices from B,...,B% to B'',..., B, then hypermatrix of T in the new set of bases is

A= (X1,...,Xq) A

Definition 37. Let F be a field and let u' € F™,u? € F"2, ... u% € F™ be vectors. Their Segre outer
product, noted ®b ® c is defined as

1,2 d ]nlng‘..nd

[uiluiz s Ui =Tio=1..ig=1"

The Segre outer product can help us to define an isomorphism between F™ ® --- ® F™e and F™ > *x"d
when F is R or C (and possibly some other fields, but it is best to avoid overgeneralizing and thereby
including pathological cases). Indeed, consider the Segre map

¢ F™ X oo x [ praXexnd
(W' u)y s et @uld
It is bilinear, and as such by the universal property of the tensor product of F-modules there is a unique
f: ™" ®---® F" such that (u' ® --- ® u?) = u!' ® --- ® u?. This mapping is evidently injective, and
since F™M > X" and F™ ® ---® F™ have the same dimension, it is an isomorphism. As such, we have just
proved the following result

“Xng

Proposition 28. Let I be a the field R or C and nq, .. .,ng be positive integers. The vector spaces F™ >
and F™ ® --- ® F™ are isomorphic.

Definition 38. Let A = [a;,..4,] € F™* > and B = [b;,..j,] € F™ "™ be hypermatrices. Their
outer product of hypermatrices noted A ® B is the hypermatrix

A®Q B = [ail,,,ipb

. . Fn1><~~><np><m1><-~><mq
.]1'“]41] € .

3.1.1 Some useful concepts

The terminology mode, when used to refer to a hypermatrix, will designate one of its dimensions. For
example, if A € F2X3X4 ig a hypermatrix, its first mode, or mode 1 will be two, second mode 3, and third
mode 4.

Definition 39. Let A = [a,...i,)i;c(n1),....iue (ng) D€ & hypermatrix. The mode ¢ fibers of A are the vectors

formed by fixing all the indices but therq mode index.

The mode q fibers are noted a;,...i,_1:iy.1...ia-

To illustrate this, if A is as before an element of F™* " *™4_then the mode ¢ fibers of A will be vectors
of the form

ail...iq71 1iq+1...id

a/il...iqfliiq+1...id -

ail...’iq_lnqiq+1...id

Fibers are the hypermatrix analogue of rows and columns of a matrix. In fact, the rows of a matrix are
its mode 1 fiber, and its columns are its mode 2 fibers.
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Definition 40. Given a hypermatrix of order d X € F"™1* " *"d_the mode k flattening of X is the matrix
noted X *) whose columns are the mode i fibers of X, arranged in reverse lexicographical order.

Reverse lexicographical order simply means that the leftmost index will vary first, then the second
leftmost, and so on, with the rightmost index will vary last. It is the lexicographical order applied to the
reverse of each string of indices. For example, given a hypermatrix of order 4 where n; = no = ng = ny = 2,
if we chose to take its mode 2 representation, we will have a 2 x 8 matrix with columns

2
X()=[$1:11 T2:11 T1:21 L2:21 L1120 L2012 L1:22 352:22]-

More generally, the mode & flattening is described by mapping each x;, .. s, .5, in the hypermatrix to x;, ;
in the mode k flattening, where

d -1
=1+ Y (-1 [[ 7w
I1=1,l#k m=1,m#k

3.1.2 Alternative matrix products

In addition to the Kronecker product, there are other possible matrix products. We will describe two of
them, the Khatri-Rao product and the Hadamard product, although other types, such as the Semi-Tensor
product and the Tracy-Singh product, also exist. Furthermore, we note that the formalism we have used to
describe the Khatri-Rao product is not unique, and that other ways of defining this product exist.

Definition 41. Let A € FI*" and B € F™*" be two matrices with the same number of columns. The
Khatri-Rao product of A and B, noted A ® B, is the Im x n matrix whoses columns are the Kronecker
products of the corresponding columns of A and B.

To illustrate this, suppose

air ... aln_
A =
ap cee Qip
and
b11 bin |
B = :
bml bmn_
Then A ® B will take the form
[a11bi1 ... aipbin ]
allbml CIEaE alnbmn
AGOB=
aitbin ... apbiy
_allbml cee alnbmn_

using the previous formalism of varying the indices of the second matrix before those of the first.
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Definition 42. Let A € F™*"™ and B € F"™*"™ be two matrices with the same dimensions. Their Hadamard
product, noted A x B is the m x n matrix whose elements are the products of the corresponding elements
of A and B.

To illustrate this, suppose

ail . A1n
A =
am1 .- Qmn
and
bll - bln
B—| : .
bni -+ bmn
The Hadamard product will be
anbir ... aipbin
AxB= :
amlbml cee amnbmn

3.2 Graphs, hypergraphs, and networks

This section will introduce the basic terminology used to describe graphs, networks and hypergraphs.

Definition 43. A graph G = (V, E¢) is a set of nodes (or vertices) Vi and a set of edges between those
nodes Fg C Vg x Va.

Graphs are also sometimes referred to as networks and we will use both terminologies. For the sake of
simplicity, we will assume that for a finite graph, the nodes are labeled 1,...,n where n is the number of
nodes. We will also consider exclusively finite graphs.

A graph is called simple if it has no loops and at most one edge between each pair of nodes. A
multigraph is a graph with multiple edges between nodes.

The concept of a graph can be generalized to a hypergraph, by weakening the condition that edges must
be pairs.

Definition 44. A hypergraph H = (Vg,Ep) is a collection of vertices or nodes along with a set of
hyperedges Fy C P(Vy) linking those nodes.

In both hypergraphs and graphs, edges can be undirected or directed, and weighted or unweighted.

Definition 45. A directed graph or digraph is one where the edges (a,b) and (b, a) are distinct. In other
words, edges in a directed graph have a direction from one node to another.

3.2.1 Multiplex networks

Graphs and networks are frequently used to represent data and their interactions. Beyond the visualization
of the interaction network (often impossible due to the size of the network), this representation is useful for
data analysis and to infer, from a topological analysis of the graph, underlying properties in the data set. In
molecular biology, new technologies provide a huge quantity of heterogeneous data, that can be interpreted
as interactions of the biological components at different scales: protein-protein interactions, gene regulation
through transcription factors, gene regulation through non-codant RNA, signalling pathways, correlation of
expression levels... [8]. While it is important to consider these data as a whole, there is also evidence that it
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Figure 3.1: A multiplex network

is better to study each of these networks separately, rather than lumping them together into a single network
[2]. Multiplex networks are composed of several layers of simple (monoplex) networks. Each layer shares
the same set of nodes, but their edges belong to different categories (they have a different meaning). Hence,
multiplex allow to encode all the different type of interactions between the components, while keeping them
separate. An illustration of this is given Figure 3.1.

We need efficient methods to mine and analyse multiplex networks despite their huge size. For example,
in [11] is proposed a random walk with restart method to predict key components around a gene of interest.
Tensors can be used to encode multiplexes (cf the following subsections), and then could shed new light on
the data and their structure.

3.2.2 Some uses of hypermatrices

Hypermatrices can be used to encode hypergraphs and multiplexes. For hypergraphs, if the hypergraph
contains n nodes, it can be coded as an order n hypercubical hypermatrix will all indices in (n + 1). To
the hypergraph H = (V, E) we can associate the hypermatrix Ay = [a;,. 5, € R?"TP X+l guch that each
@i, .., is the weight of the hyperedge between nodes i1, ..., %,. Of course, this will only work for hyperedges
of size n, which is why we add a ”0” node to the node set. A hyperedge linking nodes 4,7 and k will be
encoded by the index ag.. ;jx...0. However, this poses problems of redundancy - the same hyperedge of size r
will be in ("'TH) different places in the hypermatrix!

Coding multiplexes is a somewhat simpler task. Any multiplex M = (V, Ey,..., Ep) can be encoded in
an order 3 hypergraph

Ay = [aijk] € R™MXm™xP

where n is the size of V. Each a;;i is the value of the edge (4, 7) in the layer k.

3.3 Tensor rank decomposition

Definition 46. The rank of a tensor T' € F™ ® --- ® F™ is the number of simple or pure tensors needed
to write the tensor as a linear combination of simple tensors. In other words, it is the smallest r such that

there exists (a(l) ® - ® al(-d))iar) € F™ ®---®F™ and (\;);e(ry such that

%

T= Z)\iagl) ®-~-®a£—k).
i
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Notation The following terms will be used interchangeably - simple tensor, pure tensor, and rank-1 tensor.
The tensor rank decomposition of a hypermatrix, also sometimes called CANDECOMP, PARAFAC,
or CP-decomposition, is the process of taking a hypermatrix representation of a given tensor and finding the
hypermatrix representations and associated scalars of the simple tensors that compose it.
A proof of the following can be found in [5].

Proposition 29. Computing the rank of a tensor over any field that contains Q is NP-hard.

In practice, most tensor rank decompositions are done as approximations up to a pre-specified rank.
The decompositions are not nested - the best rank r — 1 approximation may not be part of the best rank r
approximation. Approximate tensor rank decompositions can be done using the tool Tensorly [7]. We will
also give a description of an algorithm, called the alternating least squares algorithm, which can be used to
calculate approximate tensor rank decompositions, which can be found, along with an in depth discussion
of other methods, in [6].

This algorithm will use the Moore-Penrose generalized matrix inverse, a brief discussion of which can be
found in the annex.

We will also quickly define a tensor norm, which is simply a generalization of the standard euclidian norm
on R”.

Definition 47. The tensor norm of a tensor X = [z;, . ;, € R %" ig
2 : 2
x’blldH
i1,.0050d

Given an order d hypermatrix X € R™ * %" and a pre-specified rank R, our goal will be to find scalars
A1, ..., Ar and vectors a(ll), . ..ag) € }R”Ha?)7 . ..ag) € R"2 ...,agd), . ..ag) € R so as to minimize||X —
Spha) @ @al?]].

We will organise the vectors a

|14 =

gi), e 7a%) into the columns of a matrix A = {agi) ag) . ag) . We

will next state the following lemma, which can be proved by a simple calculation.

Lemma 5.1. If X € R™*" %" 45 q hypermatriz with mode i flattening X© and with tensor rank decom-
position

R
X = ZATG"(A]') ®...®a£d)
r=1
then
X0 = AOAAD ... A+ 0 ACD 5 ... AT
where A is the diagonal matriz with A1, ..., Ar as its diagonal.

The algorithm starts initializing each of the A®) matrices. The simplest way to do this is randomly,
although other ways are possible, such as for example taking the R left singular vectors of the SVD of X (®).
Once all matrices are initialized, we fix all but the first one, and solve for that algebraically, and normalize
it by storing the norms of each column as .. In short, we preform the following operations

XD = ADAAD ©...0 AT 0 AV ... 0 AT
AXO((AD @0 A G A o o AT = A
Ar = ||)‘ra$*i)”

where as in the annex, AT denotes the Moore-Penrose pseudo-inverse of A.

We then repeat the process for each one of the other matrices. We keep doing this loop until a stopping
criteria is met - either the norm of X — Zr )\ragl) QK- Q® CLS‘d)
number of iterations is reached.

In algorithmic form, this gives 1.

stops decreasing, or a pre-specified maximal
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Data: X, R,maxlIter
Result: \i,..., g, A .. A@D
initialize A1) ... A@ .
iter = 0 ;
newFit = [|X — Y, \aP @ -+ @ a?|| ;
oldFit = newFit + 1 ;
while oldFit > newFit and iter < mazxlter do

oldFit = newFit ;

for i € (d) do

L Al — X(i)((A(d) @0 AFED o ACD oL o A(l))T)-i- :

newFit = [|X — > Ao @ ® a(d)H :
iter = iter + 1 ;

Complexity A tensor rank approximation of rank R of a hypermatrix F™ % *"¢ will require NR? space,
where N = [], n;. For time complexity, in [4] there is an algorithm that calculates the SVD of an m x n
matrix in O(max(m?n,n3)) time. A matrix multiplication of an [ x m matrix with an m x n matrix requires
O(Imn) operations. A Khatri-Rao product of an I x n matrix with an m x n matrix also requires O(Imn)
operations. Each iteration of the for loop involves calculation d — 2 Khatri-Rao products, which requires
O(N/n;) operations in total, followed by a calculation of the Moore-Penrose inverse (which is more or less
the same as a calculation the SVD of an N/n; x R matrix, which will be be O((N/n;)?) if N/n; > R, and
O(R2N) if not, and finally there is a multiplication of the mode i flattening of the hypermatrix, of dimension
n; X N/n;, with the N/n; x R matrix, which takes O(NR) time. This means that depending on R,n,; and
N, one iteration of the for loop takes O((N/n;)?) time or O(N R?) time. We then have at least d iterations
of the for loop, and an indefinite number of while loop iterations. As such, we can say that if N > R, the
whole process is cubic in V.

Applications In practice, this can be used to break up a multiplex network into a sum of smaller compo-
nent networks, which can be more easily studied.

3.4 Conclusion

The tensor product, an abstract algebraic object that enables bilinear forms to be identified with linear
forms, can be used to study real world biological systems. Any element of a tensor product of two modules
can be represented by a hypermatrix in a given base, and hypermatrices can be decomposed by a higher-order
generalization of the singular value decomposition. This decomposition, know by various names, which we
have called here Tensor Rank decomposition, enables us to find the parts of a multiplex network with the
most information. It should be noted, however, that many biological systems exhibit non-linear properties,
and as such a study of a multiplex networks that focuses only on the parts with the highest coefficients may
miss these crucial bits of information. Nevertheless, the tensor rank decomposition can be a useful tool for
the study of biological systems.
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